Draft

The Landing at Walnut Creek Apartments EIR
for the City of Walnut Creek

State Clearinghouse No. 2013092048

Prepared by:

The Planning Center | DC&E
February 28, 2014

In Association with: Fehr & Peers Transportation Consultants
Tom Origer & Associates
Environmental Collaborative
Table of Contents

1. EXECUTIVE SUMMARY ... 1-1
 1.1 ENVIRONMENTAL PROCEDURES ... 1-1
 1.2 SUMMARY OF PROPOSED PROJECT .. 1-3
 1.3 SUMMARY OF ALTERNATIVES TO THE PROPOSED PROJECT .. 1-4
 1.4 ISSUES TO BE RESOLVED .. 1-4
 1.5 AREAS OF CONTROVERSY ... 1-5
 1.6 SIGNIFICANT IMPACTS AND MITIGATION MEASURES ... 1-5
2. INTRODUCTION .. 2-1
 2.1 PROPOSED ACTION .. 2-1
 2.2 EIR SCOPE .. 2-1
 2.3 ENVIRONMENTAL REVIEW PROCESS ... 2-2
3. PROJECT DESCRIPTION .. 3-1
 3.1 PROJECT LOCATION AND SITE CHARACTERISTICS .. 3-1
 3.2 PROJECT OBJECTIVES ... 3-11
 3.3 PROJECT COMPONENTS ... 3-11
 3.4 REQUIRED PERMITS AND APPROVALS ... 3-31
4. ENVIRONMENTAL EVALUATION .. 4-1
 4.1 FORMAT OF THE ENVIRONMENTAL ANALYSIS .. 4.1-1
 4.2 CUMULATIVE IMPACT ANALYSIS .. 4.2-1
 4.3 AESTHETICS ... 4.3-1
 4.4 AIR QUALITY .. 4.4-1
 4.5 BIOLOGICAL RESOURCES ... 4.5-1
 4.6 CULTURAL RESOURCES .. 4.6-1
 4.7 GREENHOUSE GAS EMISSIONS ... 4.7-1
 4.8 LAND USE AND PLANNING ... 4.8-1
 4.9 NOISE .. 4.9-1
 4.10 POPULATION AND HOUSING ... 4.10-1
 4.11 PUBLIC SERVICES .. 4.11-1
 4.12 TRANSPORTATION AND TRAFFIC .. 4.12-1
5. ALTERNATIVES TO THE PROPOSED PROJECT .. 5-1
 5.1 PURPOSE .. 5-1
Table of Contents

5.2 POTENTIALLY SIGNIFICANT IMPACTS ... 5-1
5.3 PROJECT OBJECTIVES .. 5-5
5.4 SELECTION OF A REASONABLE RANGE OF ALTERNATIVES 5-6

6. CEQA MANDATED SECTIONS .. 6-1
6.1 IMPACTS FOUND NOT TO BE SIGNIFICANT .. 6-1
6.2 GROWTH INDUCEMENT .. 6-2
6.3 UNAVOIDABLE SIGNIFICANT IMPACTS ... 6-3
6.4 SIGNIFICANT IRREVERSIBLE CHANGES ... 6-3

7. ORGANIZATIONS AND PERSONS CONSULTED .. 7-1
7.1 LEAD AGENCY ... 7-1
7.2 OTHER PUBLIC AGENCIES ... 7-1
7.3 REPORT PREPARERS .. 7-2
LIST OF FIGURES

Figure 3-1 Aerial View of Project Site and Surroundings .. 3-2
Figure 3-2 Existing Conditions ... 3-4
Figure 3-3 General Plan 2025 Land Use Map .. 3-6
Figure 3-4 General Plan 2025 Core Area Height Limits Map ... 3-7
Figure 3-5 Measure A Height Map .. 3-8
Figure 3-6 Zoning Map .. 3-10
Figure 3-7 Conceptual Site Plan .. 3-13
Figure 3-8 North and East Building Elevations .. 3-15
Figure 3-9 West Building Elevations .. 3-16
Figure 3-10 South Building Elevation .. 3-17
Figure 3-11 South Building Elevation from Lacassie Avenue Access Point 3-18
Figure 3-12 Conceptual Central Courtyard Plan ... 3-19
Figure 3-13 Proposed Resident Amenities .. 3-20
Figure 3-14 Emergency Response Vehicle Access .. 3-21
Figure 3-15 Conceptual Landscaping Plan .. 3-23
Figure 3-16 Conceptual Lighting Plan ... 3-25
Figure 3-17 Preliminary Photometric Study ... 3-26
Figure 3-18 Preliminary Utility Plan ... 3-27
Figure 3-19 Conceptual Irrigation Plan ... 3-28
Figure 3-20 Preliminary Impervious Surface Map .. 3-30
Figure 4.2-1 Cumulative Projects .. 4.2-2
Figure 4.3-1 General Plan 2025 Scenic Viewpoints and Corridors .. 4.3-4
Figure 4.3-2 General Plan 2025 Landmarks and Gateways .. 4.3-5
Figure 4.3-3 Views of the Project Site .. 4.3-8
Figure 4.3-4 Views Surrounding the Project Site ... 4.3-10
Figure 4.3-5 Views from Ygnacio Valley Road and Oakland Boulevard ... 4.3-12
Figure 4.3-6 Aerial and Project Site Lines from Ygnacio Valley Road and Oakland Boulevard 4.3-13
Figure 4.5-1 Special-Status Plant Species .. 4.5-8
Figure 4.5-2 Special-Status Animal Species .. 4.5-9
Figure 4.9-1 Land Use Noise Compatibility ... 4.9-10
Figure 4.9-2 Approximate Noise Monitoring Locations ... 4.9-13
Figure 4.11-1 Fire Stations and Fire Service Areas in Walnut Creek ... 4.11-3
Figure 4.12-1 Project Site Vicinity and Study Intersection Locations .. 4.12-3
Figure 4.12-2 Ygnacio Valley Road Corridor .. 4.12-4
Figure 4.12-3 Existing Bicycle Facilities in the Project Vicinity ... 4.12-16
Figure 4.12-4 Existing Bus Routes in the Project Vicinity ... 4.12-18
Figure 4.12-5a Existing Peak Hour Intersection Traffic Volumes, Lane Configurations and Traffic Control ... 4.12-21
Figure 4.12-5b Existing Peak Hour Intersection Traffic Volumes, Lane Configurations and Traffic Control ... 4.12-22
Figure 4.12-6a Project Trip Assignment - Existing with Project Conditions 4.12-27
Figure 4.12-6b Project Trip Assignment - Existing With Project Conditions 4.12-28
Figure 4.12-7a Existing Peak Hour Intersection Traffic Volumes, Lane Configurations, and Traffic Control ... 4.12-29
Figure 4.12-7b	Existing Peak Hour Intersection Traffic Volumes, Lane Configurations, and Traffic Control	4.12-30
Figure 4.12-8a	Existing Plus Project Peak Hour Intersection Traffic Volumes, Lane Configurations, and Traffic Control	4.12-31
Figure 4.12-8b	Existing Plus Project Peak Hour Intersection Traffic Volumes, Lane Configurations, and Traffic Control	4.12-32
Figure 4.12-9	Near-Term Baseline Projects	4.12-38
Figure 4.12-10a	Near-Term (2016) Without Project Peak Hour Intersection Traffic Volumes, Lane Configurations, and Traffic Control	4.12-39
Figure 4.12-10b	Near-Term (2016) Without Project Peak Hour Intersection Traffic Volumes, Lane Configurations, and Traffic Control	4.12-40
Figure 4.12-11a	Near-Term (2016) With Project Peak Hour Intersection Traffic Volumes, Lane Configurations, and Traffic Control	4.12-41
Figure 4.12-11b	Near-Term (2016) With Project Peak Hour Intersection Traffic Volumes, Lane Configurations, and Traffic Control	4.12-42
Table of Contents

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.12-2</td>
<td>Unsignalized Intersection Level of Service Criteria</td>
<td>6</td>
</tr>
<tr>
<td>4.12-3</td>
<td>Freeway level of Service Definitions</td>
<td>7</td>
</tr>
<tr>
<td>4.12-4</td>
<td>Roadway Level of Service Standards</td>
<td>8</td>
</tr>
<tr>
<td>4.12-5</td>
<td>City of Walnut Creek General Plan 2025 Goals and Policies</td>
<td>11</td>
</tr>
<tr>
<td>4.12-6</td>
<td>County Connection Existing Bus Routes and Frequencies</td>
<td>15</td>
</tr>
<tr>
<td>4.12-7</td>
<td>Existing County Connection Weekday Bus Ridership, Walnut Creek BART Station</td>
<td>19</td>
</tr>
<tr>
<td>4.12-8</td>
<td>Existing Peak Hour Levels of Service at Study Intersections</td>
<td>20</td>
</tr>
<tr>
<td>4.12-9</td>
<td>Delay Index for Ygnacio Valley Road</td>
<td>23</td>
</tr>
<tr>
<td>4.12-10</td>
<td>Existing Freeway Operations</td>
<td>24</td>
</tr>
<tr>
<td>4.12-11</td>
<td>Project Trip Generation Estimates</td>
<td>33</td>
</tr>
<tr>
<td>4.12-12</td>
<td>Existing (2013) With Project Peak Hour Level of Service</td>
<td>34</td>
</tr>
<tr>
<td>4.12-13</td>
<td>Existing With Project Delay Index for Ygnacio Valley Road</td>
<td>35</td>
</tr>
<tr>
<td>4.12-14</td>
<td>Existing with Project Freeway Operations</td>
<td>36</td>
</tr>
<tr>
<td>4.12-15</td>
<td>Near-Term Baseline Projects</td>
<td>37</td>
</tr>
<tr>
<td>4.12-16</td>
<td>Near-Term (2016) With Project Peak Hour Level of Service</td>
<td>43</td>
</tr>
<tr>
<td>4.12-17</td>
<td>Near-Term (2016) Conditions Delay Index for Ygnacio Valley Road</td>
<td>44</td>
</tr>
<tr>
<td>4.12-19</td>
<td>City Code Automobile Parking Requirements</td>
<td>46</td>
</tr>
<tr>
<td>4.12-20</td>
<td>Cumulative (2030) With Project Peak Hour Level of Service</td>
<td>48</td>
</tr>
<tr>
<td>4.12-21</td>
<td>Cumulative (2030) with project Delay Index for Ygnacio Valley Road</td>
<td>49</td>
</tr>
<tr>
<td>4.12-22</td>
<td>Cumulative With Project Freeway Operations</td>
<td>50</td>
</tr>
<tr>
<td>5-1</td>
<td>Comparison of Alternatives and the Proposed Project</td>
<td>8</td>
</tr>
<tr>
<td>5-2</td>
<td>Comparison of Impacts from Project Alternatives and the Proposed Project</td>
<td>9</td>
</tr>
</tbody>
</table>
1. Executive Summary

This chapter presents an overview of the proposed The Landing at Walnut Creek Apartments, herein referred to as “proposed Project.” This executive summary also provides a summary of the alternatives to the proposed Project, identifies issues to be resolved, areas of controversy, and conclusions of the analysis contained in Chapters 4.0 through 4.12 of this Draft Environmental Impact Report (Draft EIR). For a complete description of the proposed Project, see Chapter 3, Project Description, of this Draft EIR. For a discussion of alternatives to the proposed Project, see Chapter 5, Alternatives to the Proposed Project, of this Draft EIR.

This Draft EIR addresses the environmental effects associated with the implementation of the proposed Project. The California Environmental Quality Act (CEQA) requires that local government agencies, prior to taking action on projects over which they have discretionary approval authority, consider the environmental consequences of such projects. An Environmental Impact Report is a public document designed to provide the public and local and State governmental agency decision-makers with an analysis of potential environmental consequences to support informed decision-making.

This Draft EIR has been prepared pursuant to the requirements of CEQA (California Public Resources Code, Division 13, Section 21000, et seq.) and the State CEQA Guidelines (Title 14 of the California Code of Regulations, Division 6, Chapter 3, Section 15000, et seq.) to determine if approval of the identified discretionary actions and related subsequent development could have a significant impact on the environment. The City of Walnut Creek, as the Lead Agency, has reviewed and revised as necessary all submitted drafts, technical studies, and reports to reflect its own independent judgment, including reliance on applicable City technical personnel and review of all technical subconsultant reports. Information for this Draft EIR was obtained from on-site field observations; discussions with affected agencies; analysis of adopted plans and policies; review of available studies, reports, data, and similar literature in the public domain; and specialized environmental assessments (e.g. air quality, greenhouse gas emissions, noise, geotechnical and transportation and traffic).

1.1 ENVIRONMENTAL PROCEDURES

This Draft EIR has been prepared to assess the environmental effects associated with implementation of the proposed Project, as well as anticipated future discretionary actions and approvals. The six main objectives of this document as established by CEQA are:

- To disclose to decision-makers and the public the significant environmental effects of proposed activities.
- To identify ways to avoid or reduce environmental damage.
- To prevent environmental damage by requiring implementation of feasible alternatives or mitigation measures.
EXECUTIVE SUMMARY

- To disclose to the public reasons for agency approval of projects with significant environmental effects.
- To foster interagency coordination in the review of projects.
- To enhance public participation in the planning process.

An EIR is the most comprehensive form of environmental documentation identified in the statutes and in the CEQA Guidelines. It provides the information needed to assess the environmental consequences of a proposed project, to the extent feasible. EIRs are intended to provide an objective, factually supported, full-disclosure analysis of the environmental consequences associated with a proposed project that has the potential to result in significant, adverse environmental impacts. An EIR is also one of various decision-making tools used by a lead agency to consider the merits and disadvantages of a project that is subject to its discretionary authority. Prior to approving a proposed project, the lead agency must consider the information contained in the EIR, determine whether the EIR was properly prepared in accordance with CEQA and the CEQA Guidelines, determine that it reflects the independent judgment of the lead agency, adopt findings concerning the project's significant environmental impacts and alternatives, and must adopt a Statement of Overriding Considerations if the proposed project would result in significant impacts that cannot be avoided.

1.1.1 REPORT ORGANIZATION

This Draft EIR is organized into the following chapters:

- **Chapter 1: Executive Summary.** Summarizes environmental consequences that would result from implementation of the proposed Project, describes recommended mitigation measures, and indicates the level of significance of environmental impacts before and after mitigation.
- **Chapter 2: Introduction.** Provides an overview describing the Draft EIR document.
- **Chapter 3: Project Description.** Describes the proposed Project in detail, including the site location and characteristics, objectives, and the structural and technical elements of the proposed action.
- **Chapter 4: Environmental Evaluation.** Organized into 12 sub-chapters corresponding to the environmental resource categories identified in Appendix G of the CEQA Guidelines, this section provides a description of the physical environmental conditions in the vicinity of the proposed Project as they existed at the time the Notice of Preparation was published, from both a local and regional perspective, as well as an analysis of the potential environmental impacts of the proposed Project, and recommended mitigation measures, if required, to reduce their significance. The environmental setting included in each sub-chapter provides baseline physical conditions from which the Lead Agency determines the significance of environmental impacts resulting from the proposed Project. Each sub-chapter also includes a description of the thresholds used to determine if a significant impact would occur; the methodology to identify and evaluate the potential impacts of the proposed Project; and the potential cumulative impacts associated with the proposed Project.
- **Chapter 5: Alternatives to the Proposed Project.** Considers two alternatives to the proposed Project, including the CEQA-required “No Project” alternative and a General Plan 2025 Buildout alternative.
Chapter 6: CEQA-Mandated Sections. Discusses growth inducement, cumulative impacts, unavoidable significant effects, and significant irreversible changes as a result of the proposed Project. Additionally, this chapter identifies environmental issues scoped out pursuant to CEQA Guidelines Section 15128.

Chapter 7: Organizations and Persons Consulted. Lists the people and organizations that were contacted during the preparation of this EIR for the proposed Project.

Appendices: The appendices for this document (presented in PDF format on a CD attached to the back cover) contain the following supporting documents:

- Appendix A: Initial Study
- Appendix B: Notice of Preparation and Scoping Comments
- Appendix C: Air Quality and Greenhouse Gas Data
- Appendix D: Biological Resources Data
- Appendix E: Cultural Resources Data
- Appendix F: Noise Data
- Appendix G: Public Services Data
- Appendix H: Transportation and Traffic Data
- Appendix I: Construction and Operational Health Risk Assessment

1.1.2 TYPE AND PURPOSE OF THIS DRAFT EIR

According to Section 15121(a) of the CEQA Guidelines, the purpose of an EIR is to:

Inform public agency decision makers and the public generally of the significant environmental effects of a project, identify possible ways to minimize the significant effects, and describe reasonable alternatives to the project.

As described in the CEQA Guidelines, different types of EIRs are used for varying situations and intended uses. Given the short-term nature of the proposed Project and the permitting and development actions that are related both geographically and as logical parts in the chain of contemplated actions for implementation, this Draft EIR has been prepared as a Project EIR, pursuant to Section 15161 of the CEQA Guidelines. As a Project EIR, the environmental analysis will focus primarily on the changes in the environment that would result from the development of The Landing at Walnut Creek Apartments Project. This Project EIR will examine the specific short-term impacts (construction) and long-term impacts (operation) that would occur as a result of Project approval by the City of Walnut Creek City Council.

1.2 SUMMARY OF PROPOSED PROJECT

CenterStreet Development, LLC and Blake Hunt Ventures, LLC, the Project Applicant (Applicant), proposes to redevelop the Project site with a multiple-family residential complex. Development of the proposed Project would involve demolition of existing structures and clearing all existing vegetation, and construction of the principal Project components described below.
EXECUTIVE SUMMARY

The proposed Project would involve construction of 178 market-rate rental apartment units in one building. The residential area would comprise approximately 155,804 square feet of space. The Project would include 35 studio, 110 one-bedroom and 33 two-bedroom apartment units ranging in size from 524 square feet (smallest studio unit) to 1,156 square feet (largest two-bedroom unit). Based on an average household size of 2.14 persons, it is assumed the proposed Project would have approximately 381 residents. As the majority of the proposed apartment units would be one-bedroom units, it is likely that a resident population of 381 is high, thereby allowing for a conservative analysis of potential environmental impacts. It is anticipated that residents of the Project would be drawn largely from Walnut Creek and other communities in the San Francisco Bay Area.

The proposed Project includes 155,804 square feet of residential area, 40,003 square feet of common/shared area, and 102,474 square feet of parking area, for a total of approximately 299,000 square feet. Common areas would include patios, a rooftop patio, lounge, and fitness room. The parking area noted above includes loading, storage, and trash space. While the details of the anticipated improvements are not finalized at this time, improvements to the frontage and landscaping would be done, including improvements with consideration for storm water runoff and other factors.

The proposed Project would include construction of two levels of parking with a total of 223 parking stalls. The ground level would include 87 stalls and the subterranean level would include 136 stalls. The Project would include a total of 7 parking stalls that meet the Americans with Disability Act (ADA) standards. The Project would also provide 24 bicycle parking stalls. The City’s BART Proximate parking standards apply to development on the site allowing reduced parking. All vehicular access would be from Lacassie Avenue.

1.3 SUMMARY OF ALTERNATIVES TO THE PROPOSED PROJECT

This Draft EIR analyzes alternatives to the proposed Project that are designed to reduce the significant environmental impacts of the proposed Project and feasibly attain some of the proposed Project objectives. There is no set methodology for comparing the alternatives or determining the environmentally superior alternative under CEQA. Identification of the environmentally superior alternative involves weighing and balancing all of the environmental resource areas by the City. The following alternatives to the Specific Plan were considered and analyzed in detail:

- No Project
- General Plan 2025 Buildout

Chapter 5, Alternatives to the proposed Project, of this Draft EIR, includes a complete discussion of these alternatives and of alternatives that were rejected for various reasons.

1.4 ISSUES TO BE RESOLVED

Section 15123(b)(3) of the CEQA Guidelines requires that an EIR identify issues to be resolved, including the choice among alternatives and whether or how to mitigate significant impacts. With regard to the proposed Project, the major issues to be resolved include decisions by the City of Walnut Creek, as Lead Agency, related to:
Whether this Draft EIR adequately describes the environmental impacts of the proposed Project.

Whether the benefits of the proposed Project override those environmental impacts that cannot be feasibly avoided or mitigated to a level of insignificance.

Whether the proposed land use changes are compatible with the character of the existing area.

Whether the identified mitigation measures should be adopted or modified.

Whether there are other mitigation measures that should be applied to the proposed Project besides those Mitigation Measures identified in the Draft EIR.

Whether there are any alternatives to the proposed Project that would substantially lessen any of the significant impacts of the proposed Specific Plan and achieve most of the basic objectives.

1.5 AREAS OF CONTROVERSY

The City issued a Notice of Preparation (NOP) on September 23, 2013. The scoping period for this EIR was between September 23 and October 24, 2013, during which interested agencies and the public could submit comments about the proposed Project. During this time the City received one comment letter from the East Bay Municipal Utility District (EBMUD) dated October 17, 2013.

The following is a discussion of issues that are likely to be of particular concern to agencies and interested members of the public during the environmental review process. While every concern applicable to the CEQA process is addressed in this Draft EIR, this list is not necessarily exhaustive, but rather attempts to capture those concerns that are likely to generate the greatest interest based on the input received during the scoping process.

- Aesthetic impacts from increased height
- Air Quality from construction
- Air Quality Health Risk due to close proximity to major roadways
- Vehicular Circulation

1.6 SIGNIFICANT IMPACTS AND MITIGATION MEASURES

Under CEQA, a significant impact on the environment is defined as a substantial, or potentially substantial, adverse change in any of the physical conditions within the area affected by the proposed Project, including land, air, water, minerals, flora, fauna, ambient noise, and objects of historic and aesthetic significance. While the proposed Project has the potential to generate significant environmental impacts in a number of areas, as described in Chapter 6.0, CEQA Mandated Sections, of this Draft EIR, the proposed Project would have no significant impact on the following environmental topics due to existing conditions on the Project site and surrounding area. These issues have therefore not been analyzed further in this Draft EIR.

- Agricultural and Forestry Resources
- Geology and Soils
EXECUTIVE SUMMARY

- Hazards and Hazardous Materials
- Hydrology and Water Quality
- Mineral Resources
- Recreation
- Utilities and Service Systems

Table 1-1 summarizes the conclusions of the environmental analysis contained in this Draft EIR and presents a summary of impacts and mitigation measures identified. It is organized to correspond with the environmental issues discussed in Section 4, Chapter 4.0 through 4.12. The table is arranged in four columns: 1) significant environmental impacts; 2) significance prior to mitigation; 3) mitigation measures; and 4) significance after mitigation. For a complete description of potential impacts, please refer to the specific discussions in Section 4, Chapter 4.0 through 4.12.

As shown in Table 1-1, some significant impacts would be reduced to a less-than-significant level if the mitigation measures recommended in this Draft EIR are implemented.
Table 1-1 Summary of Impacts and Mitigation Measures

<table>
<thead>
<tr>
<th>Significant Impact</th>
<th>Significance Without Mitigation</th>
<th>Mitigation Measures</th>
<th>Significance With Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>AES-1: The proposed Project would not have a substantial adverse effect on a scenic vista.</td>
<td>LTS</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>AES-2: The proposed Project would not substantially degrade the existing visual character or quality of the site and its surroundings.</td>
<td>LTS</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>AES-3: The proposed Project, in combination with past, present and reasonably foreseeable projects, would result in less than significant cumulative impacts with respect to aesthetics.</td>
<td>LTS</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>AIR-1: The Project would not conflict with or obstruct implementation of the applicable air quality plan.</td>
<td>LTS</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>AIR-2a: During construction, the Project could violate an air quality standard or contribute substantially to an existing or projected air quality violation.</td>
<td>S</td>
<td>AIR-2a: The Project’s construction contractor shall comply with the following BAAQMD Best Management Practices for reducing construction emissions of PM<sub>10</sub> and PM<sub>2.5</sub>:</td>
<td>LTS</td>
</tr>
<tr>
<td>* Water all active construction areas at least twice daily, or as often as needed to control dust emissions. Watering should be sufficient to prevent airborne dust from leaving the site. Increased watering frequency may be necessary whenever wind speeds exceed 15 miles per hour. Reclaimed water should be used whenever possible.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Pave, apply water twice daily or as often as necessary, to control dust, or apply (non-toxic) soil stabilizers on all unpaved access roads, parking areas, and staging areas at construction sites.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Cover all trucks hauling soil, sand, and other loose materials or require all trucks to maintain at least two feet of freeboard (i.e., the minimum required space between the top of the load and the top of the trailer).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Sweep daily (with water sweepers using reclaimed water if possible), or as often as needed, all paved access roads, parking areas and staging areas.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S = Significant LTS = Less than Significant
Table 1-1: Summary of Impacts and Mitigation Measures

<table>
<thead>
<tr>
<th>Significant Impact</th>
<th>Significance Without Mitigation</th>
<th>Mitigation Measures</th>
<th>Significance With Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>areas at the construction site to control dust.</td>
<td></td>
<td>▪ Sweep public streets daily (with water sweepers using reclaimed water if possible) in the vicinity of the Project site, or as often as needed, to keep streets free of visible soil material.</td>
<td></td>
</tr>
<tr>
<td>▪ Hydroseed or apply non-toxic soil stabilizers to inactive construction areas.</td>
<td></td>
<td>▪ Enclose, cover, water twice daily, or apply non-toxic soil binders to exposed stockpiles (dirt, sand, etc.).</td>
<td></td>
</tr>
<tr>
<td>▪ Limit vehicle traffic speeds on unpaved roads to 15 mph.</td>
<td></td>
<td>▪ Limit vehicle traffic speeds on unpaved roads to 15 mph.</td>
<td></td>
</tr>
<tr>
<td>▪ Replant vegetation in disturbed areas as quickly as possible.</td>
<td></td>
<td>▪ Replant vegetation in disturbed areas as quickly as possible.</td>
<td></td>
</tr>
<tr>
<td>▪ Install sandbags or other erosion control measures to prevent silt runoff from public roadways.</td>
<td>LTS</td>
<td>N/A</td>
<td>LTS</td>
</tr>
<tr>
<td>AIR-2b: During operation, the Project would not violate any air quality standard or contribute substantially to an existing or projected air quality violation.</td>
<td>LTS</td>
<td>N/A</td>
<td>LTS</td>
</tr>
<tr>
<td>AIR-3: The Project would not result in a cumulatively considerable net increase of any criteria pollutant for which the Project region is in nonattainment under an applicable federal or State ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors).</td>
<td>LTS</td>
<td>N/A</td>
<td>LTS</td>
</tr>
<tr>
<td>AIR-4a: The Project would expose off-site sensitive receptors to substantial pollutant concentrations from construction activities.</td>
<td>S</td>
<td>AIR-4a: The applicant shall adhere to one of the following:</td>
<td>LTS</td>
</tr>
<tr>
<td>▪ AIR-4a: The applicant shall adhere to one of the following:</td>
<td></td>
<td>(a) The construction contractor shall use Level 3 Diesel Particulate Filters (DPFs) for construction equipment over 75 horsepower. These types of filters are capable of reducing particulate matter emissions by 85 percent. — or —</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(b) Alternatively, the City shall allow the Applicant to prepare a revised Construction Health Risk Assessment (HRA). If the revised Construction HRA can demonstrate that construction toxic air contaminants (TAC) and fine particulate matter (PM_{2.5}) emissions can be mitigated under the Bay Area Air</td>
<td></td>
</tr>
</tbody>
</table>

*S = Significant
LTS = Less than Significant*
Table 1-1 Summary of Impacts and Mitigation Measures

<table>
<thead>
<tr>
<th>Significant Impact</th>
<th>Without Mitigation</th>
<th>Mitigation Measures</th>
<th>With Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality Management District’s (BAAQMD) threshold of 10 in a million for a lifetime cancer risk using only Level 2 DPFs, which are capable of reducing particulate matter emissions by 50 percent, or a combination of Level 2 and Level 3 DPFs, then the construction contractor shall use the required mix of Level 2 and Level 3 DPF specified in the revised Construction HRA for construction equipment over 75 horsepower. The revised HRA shall be approved by the City during the compliance review process, prior to construction.</td>
<td></td>
<td>Under either scenario above, a list of construction equipment by type and model year shall be maintained by the construction contractor on-site. The construction contractor shall ensure that all construction equipment is properly serviced and maintained to the manufacturer’s standards to reduce operational emissions, and shall limit nonessential idling of construction equipment to no more than five consecutive minutes.</td>
<td></td>
</tr>
<tr>
<td>AIR-4b: The Project would not expose on-site sensitive receptors to substantial pollutant concentrations from off-site emission sources.</td>
<td>LTS</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AIR-4c: The Project would not expose sensitive receptors to substantial pollutant concentrations from CO hotspots.</td>
<td>LTS</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AIR-5: The Project, in combination with past, present, and reasonably foreseeable projects, could cumulatively contribute to air quality impacts in the San Francisco Bay Area Air Basin.</td>
<td>S</td>
<td>AIR-5: Implementation of Mitigation Measure AIR-4a listed above would reduce the Project’s cumulative contribution to particulate matter emissions by 85 percent and the excess cancer risk for the adult and child exposure scenarios would be less than the threshold values. Additionally, the PM2.5 annual concentrations would be below the significance threshold with implementation of this mitigation measure. Consequently, the Project’s contribution to cumulative air quality impacts during construction activities would be less than significant with mitigation.</td>
<td>LTS</td>
</tr>
</tbody>
</table>

S = Significant
LTS = Less than Significant
EXECUTIVE SUMMARY

Table 1-1 Summary of Impacts and Mitigation Measures

<table>
<thead>
<tr>
<th>Significant Impact</th>
<th>Significance Without Mitigation</th>
<th>Mitigation Measures</th>
<th>Significance With Mitigation</th>
</tr>
</thead>
</table>
| **BIO-1:** The Project would have a substantial adverse effect, either directly or through habitat modifications, on species identified as candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Wildlife or United States Fish and Wildlife Service. | S | BIO-1: Adequate measures should be taken to avoid any inadvertent taking of raptor nests and other nesting birds protected under the Migratory Bird Treaty Act when in active use. This should be accomplished by taking the following steps.
- If vegetation removal and initial construction is proposed during the nesting season (March to August), a focused survey for nesting raptors and other migratory birds should be conducted by a qualified biologist within 14 days prior to the onset of vegetation removal or construction, in order to identify any active nests on the proposed Project site and in the vicinity of proposed construction.
- If no active nests are identified during the construction survey period, or if development is initiated during the non-breeding season (September to February), vegetation removal and construction may proceed with no restrictions.
- If protected bird nests are found, an adequate setback should be established around the nest location and vegetation removal and construction activities restricted within this no-disturbance zone until the qualified biologist has confirmed that any young birds have fledged and are able to function outside the nest location. Required setback distances for the no-disturbance zone should be based on input received from the California Department of Fish and Wildlife (CDFW), and may vary depending on species and sensitivity to disturbance. As necessary, the no-disturbance zone should be fenced with temporary orange construction fencing if construction is to be initiated on the remainder of the development site.
- A report of findings should be prepared by a qualified biologist and submitted to the City for review and approval prior to initiation of construction within the no-disturbance zone during the nesting season (March to August). The report should either confirm absence of any | LTS |

S = Significant
LTS = Less than Significant
EXECUTIVE SUMMARY

TABLE 1-1 SUMMARY OF IMPACTS AND MITIGATION MEASURES

<table>
<thead>
<tr>
<th>Significant Impact</th>
<th>Significance Without Mitigation</th>
<th>Mitigation Measures</th>
<th>Significance With Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO-2: The proposed Project, in combination with past, present and reasonably foreseeable projects, would result in less than significant cumulative impacts with respect to biological resources.</td>
<td>LTS</td>
<td>N/A</td>
<td>LTS</td>
</tr>
<tr>
<td>CULTURAL RESOURCES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CULT-1: The proposed Project would not cause a substantial adverse change in the significance of a historical resource as defined in Section 15064.5.</td>
<td>LTS</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>CULT-2: The proposed Project would not cause a substantial adverse change in the significance of an archaeological resource pursuant to Section 15064.5.</td>
<td>S</td>
<td>CULT-2: If any prehistoric or historic subsurface cultural resources are discovered during ground-disturbing activities, all work within 50 feet of the resources shall be halted and a qualified archaeologist shall be consulted to assess the significance of the find according to CEQA Guidelines Section 15064.5. If any find is determined to be significant, representatives from the City and the archaeologist would meet to determine the appropriate avoidance measures or other appropriate mitigation. All significant cultural materials recovered shall be, as necessary and at the discretion of the consulting archaeologist, subject to scientific analysis, professional museum curation, and documentation according to current professional standards. In considering any suggested mitigation proposed by the consulting archaeologist to mitigate impacts to historical resources or unique archaeological resources, the City shall determine whether avoidance is necessary and feasible in light of factors such as the nature of the find, Project design, costs, and other considerations. If avoidance is infeasible, other appropriate measures (e.g., data recovery) would be instituted. Work may proceed on other parts of the Project site while mitigation for historical resources or unique archaeological resources is being carried out.</td>
<td>LTS</td>
</tr>
</tbody>
</table>

S = Significant LTS = Less than Significant
EXECUTIVE SUMMARY

Table 1-1 Summary of Impacts and Mitigation Measures

<table>
<thead>
<tr>
<th>Significant Impact</th>
<th>Significance Without Mitigation</th>
<th>Mitigation Measures</th>
<th>Significance With Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CULT-3: The proposed Project would not directly or indirectly destroy a unique paleontological resource, site, or unique geologic feature.</td>
<td>S</td>
<td>CULT-3: In the event that fossils or fossil-bearing deposits are discovered during construction, excavations within 50 feet of the find shall be temporarily halted or diverted. The contractor shall notify a qualified paleontologist to examine the discovery. The paleontologist shall document the discovery as needed, in accordance with Society of Vertebrate Paleontology standards (Society of Vertebrate Paleontology 1995), evaluate the potential resource, and assess the significance of the find under the criteria set forth in CEQA Guidelines Section 15064.5. The paleontologist shall notify the appropriate agencies to determine procedures that would be followed before construction is allowed to resume at the location of the find. If the Project proponent determines that avoidance is not feasible, the paleontologist shall prepare an excavation plan for mitigating the effect of the Project based on the qualities that make the resource important. The plan shall be submitted to the City for review and approval prior to implementation.</td>
<td>LTS</td>
</tr>
<tr>
<td>CULT-4: The proposed Project, in combination with past, present and reasonably foreseeable projects, would result in less than significant cumulative impacts with respect to Cultural Resources.</td>
<td>LTS</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

GREENHOUSE GAS EMISSIONS

<table>
<thead>
<tr>
<th>GHG-1: The Project would not generate GHG emissions, either directly or indirectly, that would have a significant impact on the environment.</th>
<th>LTS</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>GHG-2: The proposed Project would be consistent with measures adopted for the purpose of reducing GHG emissions to achieve the City’s local GHG reduction target, as outlined in the City of Walnut Creek’s Climate Action Plan.</td>
<td>LTS</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Table 1-1 Summary of Impacts and Mitigation Measures

<table>
<thead>
<tr>
<th>Significant Impact</th>
<th>Significance Without Mitigation</th>
<th>Mitigation Measures</th>
<th>Significance With Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>GHG-3: The Project, in combination with past, present, and reasonably foreseeable projects, would not result in a significant cumulative impact with respect to GHG emissions.</td>
<td>LTS</td>
<td>N/A</td>
<td>LTS</td>
</tr>
<tr>
<td>LAND USE AND PLANNING</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LU-1: The proposed Project would not conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the project (including, but not limited to the general plan, specific plan, local coastal program, or zoning ordinance) adopted for the purpose of avoiding or mitigating an environmental effect.</td>
<td>LTS</td>
<td>N/A</td>
<td>LTS</td>
</tr>
<tr>
<td>LU-2: The proposed Project, in combination with past, present and reasonably foreseeable projects, would result in a less than significant cumulative impacts with respect to land use planning.</td>
<td>LTS</td>
<td>N/A</td>
<td>LTS</td>
</tr>
<tr>
<td>NOISE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOISE-1: The proposed Project would result in the exposure of persons to or generation of noise levels in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies.</td>
<td>S</td>
<td>NOISE-1: Sound-rated building construction shall be used to achieve acceptable indoor noise levels (45 dBA L_{dn}, 50 dBA L_{max} in bedrooms, and 55 dBA L_{max} in other rooms) in residential units throughout the site. Building sound insulation treatments include, but are not limited to, sound-insulating windows and doors, resilient wall constructions, heavy siding and roofing materials (e.g., stucco, Hardi-plank), ventilation silencers, and gasketing. All residential units in the Project shall require mechanical ventilation or a sound attenuating “zee” duct to allow for air circulation while windows are closed for noise control. The specification of these treatments shall be developed during the architectural design of the buildings and shall be summarized in a report. This report shall be submitted and approved by the City of Walnut Creek Building Department prior to issuance of building permits.</td>
<td>S</td>
</tr>
</tbody>
</table>

S = Significant LTS = Less than Significant
Table 1-1 Summary of Impacts and Mitigation Measures

<table>
<thead>
<tr>
<th>Significant Impact</th>
<th>Significance Without Mitigation</th>
<th>Mitigation Measures</th>
<th>Significance With Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOISE-2: The proposed Project would not result in the exposure of persons to or generation of excessive groundborne vibration or ground borne noise levels.</td>
<td>LTS</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>NOISE-3: The proposed Project would not result in a substantial permanent increase in ambient noise levels in the Project vicinity above levels existing without the Project.</td>
<td>LTS</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>
| NOISE-4: The proposed Project would result in a substantial temporary or periodic increase in ambient noise levels in the Project vicinity above levels existing without the Project. | S | NOISE-4: Develop a construction mitigation plan in close coordination with adjacent noise-sensitive land uses so that construction activities can be scheduled to minimize noise disturbance. The construction mitigation plan shall consider the following available controls to reduce construction noise levels as low as practical.
- Equip all internal combustion engine-driven equipment with mufflers that are in good condition and appropriate for the equipment.
- Keep Construction equipment well maintained.
- Utilize “quiet” models of air compressors and other stationary noise sources where technology exists. “Quiet” equipment typical generate noise levels 5 dBA lower than that of conventional equipment.
- Locate stationary noise-generating equipment as far as feasible from sensitive receptors (e.g., residences) when these receptors adjoin or are within 200 feet of a construction Project area.
- Prohibit unnecessary idling of internal combustion engines.
- Construct temporary sound barriers using plywood or similar material bearing the same sound attenuating effectiveness as plywood between portions of the construction sites and sensitive receptors, such as residences and public areas. These temporary sound barriers, which could also consist of construction-grade sound blankets/curtains, should be at least 12 feet in height.
- Ensure that construction activities (including the loading and unloading of materials and truck movements) are conducted in accordance with the hours restrictions set forth in Municipal Code. | LTS | | |

S = Significant
LTS = Less than Significant
EXECUTIVE SUMMARY

TABLE 1-1 SUMMARY OF IMPACTS AND MITIGATION MEASURES

<table>
<thead>
<tr>
<th>Significant Impact</th>
<th>Significance Without Mitigation</th>
<th>Mitigation Measures</th>
<th>Significance With Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOISE-5: The proposed Project, in combination with past, present and reasonably foreseeable projects, would result in less than significant cumulative impacts with respect to noise.</td>
<td>LTS</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>POPULATION AND HOUSING</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POP-1: The proposed Project would not displace substantial numbers of existing housing, necessitating the construction of replacement housing elsewhere.</td>
<td>LTS</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>POP-2: The proposed Project would not displace substantial numbers of people, necessitating the construction of replacement housing elsewhere.</td>
<td>LTS</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>POP-3: The proposed Project, in combination with past, present and reasonably foreseeable projects, would result in less than significant cumulative impacts with respect to population, housing and employment.</td>
<td>LTS</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>PUBLIC SERVICES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS-1: The proposed project would not result in the need for new or physically altered fire protection facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios,</td>
<td>LTS</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

* S = Significant
 LTS = Less than Significant

Section 4.6-203f and Section 9-9.07.

- Residences or noise-sensitive land uses adjacent to the construction site should be notified in writing of construction at least 7 days prior to the onset of construction activities. A “construction liaison” contact person should be designated; he/she would be responsible for responding to any local complaints about construction noise. The liaison would determine the cause of the noise complaints (e.g., starting too early, bad muffler, etc.) and institute reasonable measures to correct the problem. The phone number of the liaison should be conspicuously posted at the construction site.
Table 1-1 Summary of Impacts and Mitigation Measures

<table>
<thead>
<tr>
<th>Significant Impact</th>
<th>Significance Without Mitigation</th>
<th>Significance With Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>response times or other performance objectives.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS-2: The proposed Project, in combination with past, present and reasonably foreseeable projects, would result in less than significant cumulative impacts with respect to fire protection services.</td>
<td>LTS N/A</td>
<td></td>
</tr>
<tr>
<td>PS-3: The proposed Project would not require expanded facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times, or other performance objectives for police services.</td>
<td>LTS N/A</td>
<td></td>
</tr>
<tr>
<td>PS-4: The proposed Project, in combination with past, present and reasonably foreseeable projects, would result in less than significant cumulative impacts with respect to police services.</td>
<td>LTS N/A</td>
<td></td>
</tr>
</tbody>
</table>

TRANSPORTATION AND TRAFFIC

<table>
<thead>
<tr>
<th>Significant Impact</th>
<th>Significance Without Mitigation</th>
<th>Significance With Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAF-1: The proposed Project would not conflict with an applicable plan, ordinance or policy establishing measures of effectiveness for the performance of the circulation system, taking into account all modes of transportation including mass transit and non-motorized travel and relevant components of the circulation system, including but not limited to intersections, streets, highways and freeways, pedestrian and bicycle paths, and mass transit.</td>
<td>LTS N/A</td>
<td></td>
</tr>
<tr>
<td>TRAF-2: The proposed Project would not conflict with an applicable congestion management program, including, but not limited to level of service standards and travel demand measures, or other standards established by the county congestion management agency for designated roads or highways.</td>
<td>LTS N/A</td>
<td></td>
</tr>
</tbody>
</table>
Table 1-1 Summary of Impacts and Mitigation Measures

<table>
<thead>
<tr>
<th>Significant Impact</th>
<th>Without Mitigation</th>
<th>Mitigation Measures</th>
<th>With Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAF-3: The proposed Project would not substantially increase hazards due to a</td>
<td>LTS</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>design feature (e.g., sharp curves or dangerous intersections) or incompatible</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>uses (e.g., farm equipment).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRAF-4: The proposed Project, in combination with past, present and reasonably</td>
<td>LTS</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>foreseeable projects, would result in less than significant cumulative impacts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>with respect to transportation and traffic.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S = Significant \quad LTS = Less than Significant
2. **Introduction**

Pursuant to the California Environmental Quality Act (CEQA) Guidelines, Chapter 14 California Code of Regulations, Section 15378[a], The Landing at Walnut Creek Apartments is considered a “project” subject to environmental review as its implementation is “an action [undertaken by a public agency] which has the potential for resulting in either a direct physical change in the environment or a reasonably foreseeable indirect physical change in the environment.” This Draft Environmental Impact Report (Draft EIR) provides an assessment of the potential environmental consequences of adoption and implementation of The Landing at Walnut Creek Apartments, herein referred to as “proposed Project.” Additionally, this Draft EIR identifies mitigation measures and alternatives to the proposed Project that would avoid or reduce significant impacts. This Draft EIR compares the development of the proposed Project with the existing baseline condition, described in detail in each section of Chapter 4.0, Environmental Analysis. The City of Walnut Creek (City) is the Lead Agency for the proposed Project. This assessment is intended to inform the City's decision-makers, other responsible agencies, and the public-at-large of the nature of the proposed Project and its effect on the environment.

2.1 **PROPOSED ACTION**

Upon approval by the Walnut Creek City Council, the proposed Project would result in construction and operation of a 178-unit residential apartment development on a 1.82-acre (gross) site. The apartment building would be oriented around a central courtyard where outdoor seating, lounge chairs, and tables would be provided. Resident amenities include a fitness center, rooftop decks, an indoor lounge, and leasing office. The Project site's General Plan land use designation would be Multi-Family Special High (MFSH), which would allow a range of density from 50.1 to 100 dwelling units per acre (du/ac) in order to accommodate the Project's 100 du/ac. The Zoning district would be Planned Development (PD) to accommodate the higher density, and potential reduced parking requirement. Furthermore, the maximum building height allowed on the Project site would be 60 feet, which would be within the Measure A height limit of 89 feet. The proposed Project is described in more detail in Chapter 3, Project Description, of this Draft EIR.

2.2 **EIR SCOPE**

This document is a project EIR that identifies and analyzes potential environmental impacts of the proposed Project. As a Project EIR, the environmental analysis primarily focuses on the changes in the environment that would result from the development of The Landing at Walnut Creek Apartments Project. This Project EIR examines the specific short-term impacts (construction) and long-term impacts (operation) that would occur as a result of Project approval.
The scope of this EIR was established by the City of Walnut Creek through the Initial Study process. For a complete listing of environmental topics covered in this Draft EIR, see Chapter 4.0, Environmental Evaluation.

2.3 ENVIRONMENTAL REVIEW PROCESS

2.3.1 DRAFT EIR

An Initial Study was prepared for the proposed Project in September 2013. Pursuant to State CEQA Guidelines Section 15063, the City of Walnut Creek determined that the proposed Project could result in potentially significant environmental impacts and that an EIR would be required. In compliance with Section 21080.4 of the California Public Resources Code, the City circulated the Initial Study and Notice of Preparation (NOP) of an EIR for the proposed Project to the Office of Planning and Research (OPR) State Clearinghouse and interested agencies and persons on September 23, 2013 for a 30-day review period. The NOP solicited comments from identified responsible and trustee agencies, as well as interested parties regarding the scope of the Draft EIR. Appendix A, of this Draft EIR contains the Initial Study and Appendix B includes the NOP as well as the comments received by the City in response to the NOP.

This Draft EIR will be available for review by the public and interested parties, agencies, and organizations for a 45-day comment period. During the comment period, the public is invited to submit written or e-mail comments on the Draft EIR and/or requested entitlements to the City of Walnut Creek Community Development Department. Written comments should be submitted to:

Chip Griffin, Associate Planner
City of Walnut Creek
1666 North Main Street
Walnut Creek, CA 94596
Fax: 925-256-3500
Email: griffin@walnut-creek.org

2.3.2 FINAL EIR

Upon completion of the 45-day review period, the City of Walnut Creek will review all written comments received and prepare written responses for each comment. A Final EIR will then be prepared, incorporating all of the comments received, responses to the comments, and any changes to the Draft EIR that result from the comments received. The Final EIR will then be presented to the City of Walnut Creek for potential certification as the environmental document for the proposed Project. All persons who commented on the Draft EIR will be notified of the availability of the Final EIR and the date of the public hearing before the City.

All responses to comments submitted on the Draft EIR by agencies will be provided to those agencies at least 10 days prior to final action on the proposed Project. The City Council will make findings regarding the extent and
nature of the impacts as presented in the Final EIR. The Final EIR will need to be certified as complete by the City prior to making a decision to approve or deny the proposed Project. Public input is encouraged at all public hearings before the City.

After the City Council certifies the Final EIR, it will also consider the proposed Project itself, which it may approve, deny, or approve with conditions. The City Council may require the mitigation measures specified in this Draft EIR as conditions of Project approval, and it may also require other feasible mitigation measures. Alternately, the City Council may find that the mitigation measures are outside the jurisdiction of the City to implement, or that there are no feasible mitigation measures for a given significant impact. In the latter case, the City Council may nonetheless determine that the proposed Project is necessary or desirable due to specific overriding considerations, including economic factors, and may approve the proposed Project despite an unavoidable, significant impact.

2.3.3 MITIGATION MONITORING

Public Resources Code Section 21081.6 requires that the lead agency adopt a monitoring or reporting program for any project for which it has made findings pursuant to Public Resources Code 21081. Such a program is intended to ensure the implementation of all mitigation measures adopted through the preparation of an EIR. The Mitigation Monitoring Program for the proposed Project will be completed as part of the Final EIR.
3. **Project Description**

CenterStreet Development, LLC and Blake Hunt Ventures, LLC, the Project Applicant (Applicant), are proposing the Landing at Walnut Creek Apartments Project (“proposed Project”), which would involve the construction and operation of a 178-unit residential apartment development on a 1.82-acre (gross) site. This chapter provides a detailed description of the proposed Project, including the location, setting, and characteristics of the Project site, the Project objectives, the principal Project features, Project phasing and approximate construction schedule, as well as required permits and approvals. Additional descriptions of the environmental setting as they relate to each of the environmental issues analyzed in Chapter 4, Environmental Assessment, of this Draft EIR are included in the environmental setting discussions contained within Chapters 4.3 through 4.12.

3.1 PROJECT LOCATION AND SITE CHARACTERISTICS

3.1.1 REGIONAL LOCATION

The Project site is located in the City of Walnut Creek, in central Contra Costa County. Walnut Creek is located approximately 23 miles east of San Francisco at the foot of Mt. Diablo. The city is located east of the City of Lafayette, south of the City of Concord, and north of the City of Danville. Regional access to the Project site is provided by Interstate 680 (I-680), State Highway 24 (SR-24), and by Bay Area Rapid Transit District (BART) commuter train service.

3.1.2 LOCAL SETTING

The Project site is located at 207-235 Ygnacio Valley Road in the Core Area of Walnut Creek. The Core Area is a 1.2-square-mile central district that is a highly urbanized with higher densities than other parts of the city.1 Figure 3-1 shows an aerial view of the Project site and surrounding development. The site is bound by Ygnacio Valley Road to the north, existing commercial office off of Ygnacio Valley Road to the east, Lacassie Avenue to the south and Oakland Boulevard (i.e., Highway 24/I-680 Off Ramp) to the west. The Project site is in close proximity to the Walnut Creek BART Station, which is located to the north across Ygnacio Valley Road. Nearby uses to the south include multi-family and commercial space, as well as the Walnut Creek Presbyterian Church. There is commercial development located to the west across Oakland Boulevard and further west, across I-680, there is residential housing. Retail uses are located to the east across North California Boulevard.

1 *Walnut Creek General Plan 2025*, Built Environment Element, page 4-9 and Figure 15, Specific Plan Boundaries, and Figure 16, Core Area Specific Plan and Redevelopment Areas, page 4-35 and 4-36, respectively.
Figure 3-1

Aerial View of Project Site and Surroundings

Source: BHV CenterStreet Properties, LLC, 2013.
The City’s Pedestrian Retail District (P-R)\(^2\) is located approximately 0.5-mile from the Project site. The P-R district provides a concentration of destination-oriented retail activity that is within the city’s designated Core Area.

The Project site is bound by existing bicycle routes on Ygnacio Valley Road and Oakland Boulevard, and is in close proximity to existing bicycle lanes on North California Boulevard. An existing multi-use path is located to the west of the Project site on Oakland Boulevard. The existing bicycle route on Ygnacio Valley Road provides a connection to the Iron Horse Regional Trail located east of the Project site. Future bicycle lanes and routes are proposed to connect these existing routes and lanes to a wider network including bicycle routes and/or lanes on Trinity Avenue to the south continuing on to Civic Drive heading northeast as well as from Ygnacio Valley Road continuing to the northwest.\(^3\)

The Project site plans include a concept location to accommodate a future public pedestrian bridge, crossing over Ygnacio Valley Road from Lacassie Avenue to the BART Station adjacent to the Project site. However, the development of this overcrossing is not part of the proposed Project. Once the pedestrian overcrossing project is ready to be implemented, it would undergo environmental review pursuant to CEQA, as required.

3.1.3 EXISTING SITE CHARACTER

As shown on Figure 3-2, the Project site is located on Assessor’s Parcel Numbers (APNs) 174-220-042-4, 174-220-049, 174-220-050 and Caltrans Parcel 048664-01.1. Totaling 1.82-acres in area, the Project site is currently developed with eight residential buildings with a total of 20 units, all of which are currently occupied. The existing residential buildings are distributed throughout the site as follows:

- APN 174-220-042: one 10-unit apartment complex.
- APN 174-220-049: three duplexes and three single-family dwellings.
- APN 174-220-050: one single-family dwelling.

The site is generally flat with ornamental landscaping. A preliminary tree assessment shows that 34 trees with a trunk diameter of at least 9 inches at 4.5 feet above grade are located on the site.\(^4\)

\(^2\) Walnut Creek Municipal Code, Title 10 (Planning and Zoning), Chapter 2 (Zoning), Part 2 (Base District Regulations), Article 6 (Pedestrian Retail District).

\(^3\) *Walnut Creek Bicycle Plan*, adopted August 2, 2011, Figure 5-1, Existing and Proposed Bicycle Facilities, page 5-3.

\(^4\) Projected Tree Inventory Map dated November 26, 2012, and the Addendum to Tree Inventory and Assessment for “The Landing at Walnut Creek,” May 22, 2013 prepared by John Traverso, BMCA #0206-b.
Figure 3-2

Existing Conditions

Source: BHV CenterStreet Properties, LLC, 2013.
3.1.4 GENERAL PLAN LAND USE DESIGNATION AND ZONING

3.1.4.1 GENERAL PLAN

Residential

The City of Walnut Creek’s General Plan (General Plan 2025) designates the Project site as Multi-Family Very High, 30.1-50 dwelling units per acre (MFVH), a land use designation intended primarily for the city’s conventional apartment complexes. Structures in this land use designation generally exceed two stories and include onsite amenities such as recreational facilities, private balconies or patios, and common open space. The allowable density of 30.1-50.0 dwelling units per acre (du/acre) translates to a population of 47.9 to 79.5 persons per acre. General Plan Land Use designations are shown on Figure 3-3.

Building Height

The City regulates building height in Chapter 4 of General Plan 2025, Built Environment, as well as in the Zoning Ordinance (the height limits contained in the General Plan are the same as those stipulated by the Zoning Ordinance). Building height affects the city’s appearance and identity, particularly in the pedestrian-scaled areas that comprise the Core Area and the Traditional Downtown. By regulating building heights, the City can protect view corridors, regulate building scale, and ensure consistency and compatibility within an area or along a street.

Measure A, the Building Height Freeze Initiative, was passed at a Special Election held on March 12, 1985 and became effective on March 29, 1985. Under Measure A, height limits cannot exceed those that were in place as of March 29, 1985, nor can they exceed a height of six stories, without approval of the electorate. The text of Measure A is adopted as part of the Walnut Creek Zoning Ordinance. As shown on Figure 3-4, the current General Plan and Zoning Ordinance height limits for the site are a maximum of 50 feet. As shown on Figure 3-5, the maximum height limits possible under Measure A without the need for a citywide election is 89 feet on the majority of the site, with a portion of the site restricted to a 50-foot maximum.

Building Setbacks

Given its frontage on Ygnacio Valley Road, Lacassie Avenue, and Oakland Boulevard, a moderate setback of between 10 to 20 feet is required for the portion of the Project site fronting these thoroughfares, as established in the General Plan 2025.

5 Walnut Creek General Plan 2025, Built Environment Element, page 4-4.
6 Walnut Creek Municipal Code, Title 10 (Planning and Zoning), Chapter 2 (Zoning), Part 1 (General Provisions), Article 3 (Establishment of Districts).
Figure 3-3
General Plan 2025 Land Use Map

Source: Walnut Creek General Plan 2025.
Figure 3-4
General Plan 2025 Core Area Height Limits Map

Source: Walnut Creek General Plan 2025.
Figure 3-5
Measure A Height Map

Source: Walnut Creek General Plan 2025.
West Downtown Specific Plan

The Project site is also located within the boundary of the future West Downtown Specific Plan, which is currently being prepared by the City. The vision of the Plan is to create easier pedestrian and bicycle connections between the BART Station and Downtown Walnut Creek, explore the potential for new homes and businesses between Olympic Boulevard and the BART Station, and to preserve the Amond-Shuey neighborhood.

3.1.4.2 ZONING

Residential

As shown on Figure 3-6, the Project site is zoned Multiple Family Residential 1,000-square-foot per unit (M-1)\(^7\) in the Zoning Ordinance. In this zoning district, multiple-family residential uses are allowed by right. Setback standards within the M-1 zoning district require a minimum front setback of 15 feet, and side and rear yards are dependent on the height of the building. Development standards applicable to the M-1 district also require a maximum of 70 percent lot coverage, 200 cubic feet of private storage for each unit and that at least 20 percent of the development site consists of landscaping.

Overlay Zone 3

The Project site is within Overlay Zone 3. The purpose of the overlay zoning district is to allow for additional control on an individual lot or a group of lots that will supersede the requirements of the underlying zone.\(^8\) Accordingly, the development on the site would be subject to the standards of the Overlay Zone 3, which includes the approval of a Conditional Use Permit (CUP) to address the issue of adequate and safe driveway accesses on Ygnacio Valley Road and to coordinate the location and interconnection of future driveways in the planning area.\(^9\) However, the Applicant is not proposing a driveway at this location.

BART Proximate

Given the Project site's proximity to the Walnut Creek BART station, the Project site is within the “BART Proximate” classification identified in the Zoning Ordinance.\(^10\) For sites in BART Proximate areas, multiple family residential off-street parking requirements differ from the basic parking requirements applicable to multiple family residential developments located further from the BART station.

\(^7\) Walnut Creek Municipal Code, Title 10 (Planning and Zoning), Chapter 2 (Zoning), Part 3 (Regulations Applying in all or Several Districts, Article 2 (Off-Street Parking and Loading Regulations).

\(^8\) Walnut Creek, Title 10 (Planning and Zoning), Chapter 2 (Zoning), Part 2 (Base District Regulations), Article 18 (Overlay District).

\(^9\) Walnut Creek Ordinance 1412, Overlay Zone 3, adopted January 16, 1979.

\(^10\) Walnut Creek Municipal Code, Title 10 (Planning and Zoning), Chapter 2 (Zoning), Part 2 (Base District Regulations), Article 3 (Multi-family Residential Districts).
Figure 3-6

Zoning Map

Source: Walnut Creek General Plan 2025.
3.2 PROJECT OBJECTIVES

In coordination with the City, the Applicant has developed the following Project objectives:

- Redevelop an underutilized property to provide a high-quality, high-density residential apartment project directly across Ygnacio Valley Road from the Walnut Creek BART station that provides a well-designed and well-situated residential community for current and future residents desiring to reside in a transit friendly environment in Walnut Creek with transit connectivity to the larger Bay Area.

- Use the architectural design of the building and associated site hardscape/landscaping features to create a strong statement of “entry” or “gateway” for those arriving by car or BART into Walnut Creek, embellished by using artwork and prominent architectural features;

- Utilize the sloping topography of the site and architectural design to harmonize and establish a contextual relationship between this high density development and the surrounding environments located on the each side of the property, minimizing the aesthetic impact of parking.

- Build a project consistent with the goals of the Built Environment Element contained in General Plan 2025, including Policy 10.1 to “support the development of high-density residential near and around the Walnut Creek and Pleasant Hill BART stations,” Policy 12.2 to “support infill and redevelopment in existing urban areas,” and Goal 15 to “enhance connectivity and mobility throughout the city.”

- Build a project consistent with the City’s Priority Development Area (PDA) designation by the Association of Bay Area Governments (ABAG) and the Metropolitan Transportation Commission (MTC) through the Bay Area’s Regional FOCUS program, which was intended to encourage high density new development in close proximity to transit nodes that will help to reduce greenhouse gas emissions through a reduction in vehicle trips. This objective is also consistent with the goals of the 2011 Climate Action Plan which encourages a conversion of vehicular trips to non-vehicular trips or transit trips (Transit and Land Use Goal 3);

- Build a project consistent with the intent of the proposed West Downtown Specific Plan Area with its primary purpose to facilitate new commercial and residential development in proximity to the BART station and to create opportunities for increased use of transit, pedestrian and bike routes within the City’s Priority Development Area. This objective will be achieved by enhancing and activating the pedestrian and bicycle connection from Lacassie Avenue to the BART station through landscaping and new bike lanes and providing parking for residents and visitors consistent with BART-proximate ratios.

3.3 PROJECT COMPONENTS

The Applicant proposes to redevelop the Project site with a multiple family residential complex. Development of the proposed Project would involve demolition of existing structures and associated parking on-site and construction of the principal Project components outlined below. Demolition and construction would take place over a period of approximately 20 months, which is anticipated to commence in March 2015, subject to regulatory approval.
3.3.1 DEMOLITION, SITE PREPARATION, AND CONSTRUCTION

The Applicant proposes to demolish the existing residential buildings and remove all the vegetation that is currently on the Project site. Demolition would take place over a period of approximately 30 working days, while site preparation would be completed over a 5-month period. Demolition debris would be off-hauled for disposal in accordance with the Walnut Creek Construction Debris Recycling Ordinance. Debris to be hauled would include approximately 118 trees (clean lumber), 560 tons of building demolition debris, 4,200 tons of asphalt/concrete material, and 40,725 cubic yards of grading and soil off-haul. Typical equipment to be used for demolition and site preparation would include excavators, a skid steer loader, a grader, a rubber-tired dozer, scrapers, and an off-highway truck.

During the construction period, there would be an average of approximately 10 workers on-site daily. The Project construction would be comprised of 298,291 square feet for the building including the parking garage, 17,500 square feet for landscaping, 20,480-square feet for the paved parking lot and 10,171 square feet of hardscape (e.g., curb, gutters, planters, seat walls, etc.). No pile driving, rock blasting, or crushing would occur during the construction phase. Typical equipment to be used for construction of the Project would include a backhoe, a crane, aerial lifts, a generator, a diesel pump, dumpers, rollers, and a paver.

3.3.2 RESIDENTIAL COMPONENT

3.3.2.1 APARTMENT UNITS

The proposed Project would involve construction of 178 market-rate rental apartment units in one building as shown on Figure 3-7. The residential area would comprise approximately 155,804 square feet of space. The Project would include 35 studio, 110 one-bedroom, and 33 two-bedroom apartment units ranging in size from 524 square feet (smallest studio unit) to 1,156 square feet (largest two-bedroom unit). Based on an average household size of 2.14 persons, it is assumed the proposed Project would house approximately 381 residents. As the majority of the proposed apartment units would be one-bedroom units, it is likely that a resident population of 381 is high, thereby allowing for a conservative analysis of potential environmental impacts. It is anticipated that residents of the Project would be drawn largely from Walnut Creek and other communities in the San Francisco Bay Area.

3.3.2.2 PROPOSED BUILDING HEIGHTS

The proposed building would consist of four levels of residential over two levels of parking, one of which would be subterranean. The proposed Project would be 60 feet at its highest point.

11 Walnut Creek Municipal Code, Title 3 (Sanitation and Health), Chapter 6 (Solid Waste and Recycling), Article 6 (Construction Debris Recycling).

12 This analysis is based on the Association of Bay Area Governments (ABAG) projections of the average household size of 2.14 persons for Walnut Creek in 2025, as described in Chapter 4.10, Population and Housing, of this Draft EIR. This is the standard approach for population and housing analysis in Walnut Creek.
This residential structure is sufficiently close to an exterior noise source potentially greater than 60 db which will require acoustical analysis showing that the proposed design will limit exterior noise to the prescribed interior level.

Site Information

Maximum Building Heights:
- 60’ Maximum Building Height Measured from Avg. Grade Plane (CBC Section 504.2 & Table 503)
- 89’ Maximum Building Height Measured from Base Elevation (existing or proposed grade, whichever is lower) to Top of Parapet per Measure A
- 50’ Maximum Building Height Measured from Base Elevation (existing or proposed grade, whichever is lower) to Top of Parapet per Measure A for Parcel #4 & 15 only

Required Building Setbacks:
- Lacassie Avenue: 15’ Average Setback
- Caltrans Off-Ramp: 15’ Average Setback*
 *Setback accommodates 25’ Setback from Caltrans R.O.W.
- Ygnacio Valley Road: 15’ Average Setback
- East Elevation: 17’-6” Calculated Setback

Sidewalk Requirement:
- Core Area sidewalk requirement: 10’ minimum
- All Frontages in Compliance with Walnut Creek General Plan 2025 Sidewalk Requirements

Gross Square Footages

B1 Level:
- Residential Units: 8,016 SF
- Corridor/Vertical Circulation: 2,660 SF
- Storage: 3,444 SF
- Garage: 43,394 SF

Level 2:
- Residential Units: 35,747 SF
- Corridor/Vertical Circulation: 7,505 SF
- Storage: 514 SF
- Amenities: 3,623 SF

Level 3:
- Residential Units: 40,728 SF
- Corridor/Vertical Circulation: 6,822 SF
- Storage: 156 SF

Level 4:
- Residential Units: 40,728 SF
- Corridor/Vertical Circulation: 6,822 SF
- Storage: 156 SF

Level 5:
- Residential Units: 30,585 SF
- Corridor/Vertical Circulation: 5,034 SF
- Storage: 156 SF
- Amenities: 3,031 SF

Gross Building SF Subtotals:
- Residential Units: 155,823 SF
- Corridor/Vertical Circulation: 28,883 SF
- Storage: 4,656 SF
- Amenities: 6,654 SF
- Garage: 102,474 SF
- Total: 298,281 SF

This residential structure is sufficiently close to an exterior noise source potentially greater than 60 db which will require acoustical analysis showing that the proposed design will limit exterior noise to the prescribed interior level.

Project to comply with 2010 CBC Section 1207.11.1, 1207.11.2 and 1207.11.4

Source: BHV CenterStreet Properties, LLC, 2013.

Figure 3-7

Conceptual Site Plan
PROJECT DESCRIPTION

The Applicant is requesting an amendment to the General Plan to increase the maximum building height identified on the General Plan Height Limit map from 50 feet to approximately 60 feet, which would be less than the Measure A height limit of 89 feet. Building elevations are shown on Figures 3-8 through 3-11. The maximum elevation of the Project site is approximately 177 feet, with the highest point of the proposed structure reaching an elevation of 229 feet.

3.3.2.3 RESIDENT AMENITIES

As shown on Figure 3-12, the proposed apartment building would be oriented around a central courtyard where outdoor seating, lounge chairs, and tables would be provided. Resident amenities such as a fitness center, rooftop decks, an indoor lounge, and leasing office are shown on Figure 3-13. In total, common areas and resident amenities would comprise approximately 40,003 square feet of space.

3.3.3 CIRCULATION

3.3.3.1 VEHICULAR ACCESS

Resident Access Point

Vehicular access to the Project site would be provided via one access point on Lacassie Avenue, as shown in Figure 3-7 above. The single driveway would link directly to the ground level and subterranean parking levels. Two ground-level loading stalls would be provided at one location off Lacassie Avenue for move-in and move-out purposes.

Emergency Responder Access

Consistent with General Plan Action 4.2.1, the preliminary Project site plans were reviewed by the Contra Costa County Fire Protection District (CCCFPD). Emergency response vehicle access is shown on Figure 3-14. As shown, emergency response vehicles would access the Project site from Ygnacio Valley Road to the north and Lacassie Avenue on the south. An emergency response vehicle staging area with adequate turning radius for emergency response vehicles is located at the western terminus of Lacassie Avenue to meet the standards of the CCCFPD and the City’s Fire Code. One fire hydrant currently exists on the northern end of Lacassie Avenue. Under the proposed Project, this fire hydrant would be relocated closer to the access point and two additional fire hydrants would be installed along the Ygnacio Valley Road emergency vehicle response access area.

13 Chip Griffin, Associate Planner, City of Walnut Creek. Personal communication with The Planning Center | DC&E, October 31, 2013.
14 Walnut Creek Municipal Code Title 9 (Building Code), Chapter 19 (Fire Code).
THE LANDING AT WALNUT CREEK APARTMENTS PROJECT DRAFT EIR
CITY OF WALNUT CREEK

Source: BHV CenterStreet Properties, LLC, 2013.

Figure 3-8
North and East Building Elevations
Figure 3-9
West Building Elevations

Source: BHV CenterStreet Properties, LLC, 2013.
Source: BHV CenterStreet Properties, LLC, 2013.

Figure 3-10
South Building Elevation
Source: BHV CenterStreet Properties, LLC, 2013.

Figure 3-11
South Building Elevation from Lacassie Avenue Access Point
Figure 3-12
Conceptual Central Courtyard Plan

Source: BHV CenterStreet Properties, LLC, 2013.
RESIDENT AMENITIES

LEASING OFFICE: 1,109 SF
- Function of Space: Business area
- Floor Area in SF per Occupant: 110 SF
- Per 2010 CBC Table 1004.1.1: 200 SF/100 SF = 2 occupants
- Exception #2 since occupant load is less than 50 persons
- B Occupancy (Accessory to R-2) per 2010 CBC Section 303.1
- Function of Space: Business area

FITNESS CENTER: 1,428 SF
- Function of Space: Exercise room
- Floor Area in SF per Occupant: 150 SF
- Per 2010 CBC Table 1004.1.1: 290 SF/100 SF = 3 occupants
- Exception #2 since occupant load is less than 50 persons
- B Occupancy (Accessory to R-2) per 2010 CBC Section 303.1
- Function of Space: Exercise room

MAIL ROOM: 112 SF
- Function of Space: Accessory occupancy to R-2 per 2010 CBC Section 201.1
- Exception #2 since occupant load is less than 50 persons
- B Occupancy (Accessory to R-2) per 2010 CBC Section 303.1
- Function of Space: Accessory occupancy to R-2 per 2010 CBC Section 201.1

PROPOSED RESIDENT AMENITIES

RESIDENT AMENITIES

ROOF DECK 1: 355 SF
- Function of Space: Assembly without fixed seats
- Unconcentrated (tables & chairs)
- Floor Area in SF per Occupant: 15
- Per 2010 CBC Table 1004.1.1:
- Exception #2 since occupant load is less than 50 persons
- B Occupancy (Accessory to R-2) per 2010 CBC Section 303.1
- Function of Space: Assembly without fixed seats

ROOF DECK 2: 22 Seats = 22 Occupants
394 SF / 15 net = 26 Occupants
- Per 2010 CBC Table 1004.1.1:
- Function of Space: Assembly without fixed seats

ROOF DECK 3: 20 Seats = 20 Occupants
215 SF / 15 net = 14 Occupants
- Per 2010 CBC Table 1004.1.1:
- Function of Space: Assembly without fixed seats

RESIDENT AMENITIES

Lounge & Roof Decks at Level 5

Proposed Resident Amenities

THE LANDING AT WALNUT CREEK APARTMENTS PROJECT DRAFT EIR
CITY OF WALNUT CREEK

PROJECT DESCRIPTION

Source: BHV CenterStreet Properties, LLC, 2013.
Figure 3-14

Emergency Response Vehicle Access

Source: BHV CenterStreet Properties, LLC, 2013.

THE LANDING AT WALNUT CREEK APARTMENTS PROJECT DRAFT EIR
CITY OF WALNUT CREEK

PROJECT DESCRIPTION

LEGEND

1-Story Type IA R-2 Below 3-hr Horizontal Separation
2-hr Fire Wall Per 2010 CBC Section 706
Fire Department Truck Access
Fire Department Ladder Access **
2-hr Stair to Roof
(3) Proposed Fire Hydrant of East Bay type*
(1) Existing Fire Hydrant of East Bay type*
Building Exit

Wet Standpipe requested by Contra Costa County Fire Protection District (class B pumps) per 2010 CBC Section 905.4
Wet Standpipe at Stair Intermediate Landing per 2010 CBC Section 905.4
Wet Standpipe at Horizontal Exit Doors per 2010 CBC Section 905.4. Standpipe omitted if within 100' of stair per CBC Section 905.4 Exception #2

*Note: the flow rate is based on 50 PSIG at hydrant
**Typical Window Locations Shown - Refer to Elevations for Variations

Source: BHV CenterStreet Properties, LLC, 2013.
Solid Waste Service Access

Solid waste receptacles would be accessible at two locations to the north and south within the ground-level garage and would be staged in front of the garage along Lacassie Avenue frontage on trash service days.

Pedestrian and Bicycle Access

As shown on Figure 3-7, pedestrian access to the building would be available from one access point off Ygnacio Valley Road, at two locations along the eastern perimeter, and at two access points off of Lacassie Avenue. The Project includes a 10-foot minimum sidewalk along the Project’s frontages in compliance with the Walnut Creek General Plan 2025 Core Area sidewalk requirements.

While the Project does not propose any new bicycle lanes or routes, as previously stated the site is accessible via the existing bicycle routes on Ygnacio Valley Road and Oakland Boulevard and is in close proximity to existing bicycle lanes on North California Boulevard. Moreover, per the Walnut Creek Bicycle Plan, future bicycle lanes and routes are proposed to connect these existing routes and lanes to a wider network.

Parking

The proposed Project would include construction of two levels of parking with 223 parking stalls. The ground level would include 87 stalls and the subterranean level would include 136 stalls. The Project would include seven parking stalls that meet the Americans with Disability Act (ADA) standards. The Project would also provide 24 bicycle-parking stalls. As previously discussed, the City’s BART Proximate parking standards apply to development on the site.

3.3.4 LANDSCAPING

Figure 3-15 illustrates the proposed landscape planting plan. A total of 53 trees, including street trees, would be planted throughout the site. Some of the tree types proposed include black tupelo, maidenhair tree (male variety), Brisbane box (low branching), hybrid strawberry tree, peppermint willow, and crabapple. The street tree types will be determined according to the City’s Master Street Planting Plan. The Project’s landscape planting plan also includes planting of shrubs, ferns, grasses, and other groundcover.

15 Walnut Creek General Plan, Chapter 5 (Transportation), Policy 6.2, Action 6.2.1, page 5-14.
16 Walnut Creek Municipal Code Title 7 (Public Works), Chapter 1 (Encroachments), Article 4 (Street Trees).
THE LANDING AT WALNUT CREEK APARTMENTS PROJECT DRAFT EIR
CITY OF WALNUT CREEK

PROJECT DESCRIPTION

Figure 3-15
Conceptual Landscaping Plan

Source: BHV CenterStreet Properties, LLC, 2013.
3.3.5 LIGHTING

The conceptual lighting plan is shown in Figure 3-16. The source, intensity, and type of exterior lighting for the Project site would be typical for orientation and safety needs. As shown on Figure 3-17, all on-site lighting would be low-level illumination and shielded to reduce light spill or glare. In landscaped and paved areas, light sources will be concealed and not visible from a public viewpoint. All exterior surface and above-ground mounted fixtures will be sympathetic and complementary to the architectural theme.

3.3.6 PUBLIC ART

The Walnut Creek Public Art Ordinance requires no less than 1 percent of the Project's construction cost go toward public art, either installed on-site or paid as an in-lieu fee. The Applicant is currently working with the City to determine what public art feature shall be included on the Project site and where said art will be located on-site.

3.3.7 UTILITIES

The proposed utility infrastructure would connect to the existing water, sewer, storm drain system, natural gas and electricity network in the area, and would be served by an existing solid waste landfill.

3.3.7.1 WATER SUPPLY AND CONSERVATION

The Project site is located within the East Bay Municipal Utility District (EBMUD) service area and EBMUD would supply water for the Project. As shown on Figure 3-18, the proposed Project would connect to the existing water lines along Lacassie Avenue, Ygnacio Valley Road and Oakland Boulevard. Any new connections or replaced water lines would not encroach on undisturbed areas. The Project incorporates a number of features meant to conserve water used for on-site irrigation. Water conserving features include an automatic “smart” irrigation controller with rain-sensor, low precipitation/low angle irrigation spray heads, low volume drip tubing installed below mulch, low water consuming plants, soil moisture retention techniques, and mulching to reduce evapotranspiration from the root zone. As shown on Figure 3-19, plants would be grouped with similar water, climatic and soil requirements to conserve water and create a drought responsive landscape. The proposed landscaping includes specific hydrozones that consist of moderate to low water consuming plants with consideration given to northern, southern, eastern and western exposures to conserve water.

17 Walnut Creek Municipal Code, Title 10 (Planning and Zoning), Chapter 10 (Public Art).
18 Chip Griffin, Associate Planner, City of Walnut Creek. Personal communication with The Planning Center | DC&E, October 31, 2013.
Figure 3-16
Conceptual Lighting Plan

Source: BHV CenterStreet Properties, LLC, 2013.
Figure 3-17
Preliminary Photometric Study

Source: BHV CenterStreet Properties, LLC, 2013.
THE PLANNING CENTER | DC&E

Figure 3-18
Preliminary Utility Plan

Source: BHV CenterStreet Properties, LLC, 2013.
Figure 3-19
Conceptual Irrigation Plan
3.3.7.2 SANITARY SEWER SERVICE

The Central Contra Costa Sanitary District (CCCSD) provides wastewater collection and treatment service for Walnut Creek. Sanitary wastewater generated on the Project site would be treated by CCCSD at a wastewater treatment plant located near Martinez. As shown on Figure 3-17, some existing infrastructure would be preserved in place and some new sewer lines would be installed to increase the size of sewer lines that channel effluent from the Project site to the sewer main. Any new connections or replacement sewer lines would not encroach on undisturbed areas.

3.3.7.3 SOLID WASTE SERVICES

The Central Contra Costa Solid Waste Authority (CCCSWA) provides solid waste and residential recycling services for Contra Costa County and is responsible for recycling and solid waste management in Walnut Creek, including the Project site. The CCCSWA has agreements with Allied Waste for the collection, transfer, and disposal of residential and commercial solid waste within its jurisdiction, including the Project site. Per requirements of the City’s Construction Debris Ordinance, the Applicant would prepare and implement a Waste Management Plan, which includes the estimated volume of reusable and recyclable construction and demolition debris, the vendor or facility proposed to collect or receive the diverted materials, and the estimated volume of the residual debris that will be disposed of rather than reused or recycled. Additionally, within 30 days after the completion of the Project, the Applicant will submit a Waste Management Report that proves that the Project has met the diversion requirement.

3.3.7.4 OTHER UTILITIES (GAS, ELECTRIC, AND CABLE)

Gas and electricity would be supplied to the Project site by Pacific Gas & Electric (PG&E). Telephone service would be provided by AT&T and other providers. Cable television service would be available from a number of providers, including Comcast.

3.3.7.5 STORMWATER MANAGEMENT

As shown on Figure 3-19, the proposed Project would include approximately 75,881 square feet of impervious surface. This represents a net increase of 23,502 square feet of impervious surface over the Project site from existing to proposed. All new development projects that disturb one or more acres are required to incorporate water quality improvements into the site design, as per the Contra Costa County Stormwater C.3 requirements. The requirements include the minimization of impervious surfaces, measures to detain or infiltrate runoff from peak flows to match pre-development conditions, and agreements to ensure that the stormwater treatment and

21 Walnut Creek Municipal Code, Title 5 (Sanitation and Health), Chapter 3 (Solid Waste Recycling), Article 6 (Construction Debris Recycling).
Figure 3-20

Preliminary Impervious Surface Map

Source: BHV CenterStreet Properties, LLC, 2013.
flow control facilities are maintained in perpetuity. Also, the City of Walnut Creek Municipal Code Title 9, Building Regulation, Chapter 16, Stormwater Management and Discharge Control, requires preparation of a Stormwater Control Plan that meets the C.3 requirements for each development project.

3.3.8 PUBLIC SERVICES

Public service providers in Walnut Creek are comprised of the following:

- **The Contra Costa County Fire Protection District (CCCFPD)** provides fire protection and first responder emergency medical services to Walnut Creek and surrounding unincorporated areas of Contra Costa County. The CCCFPD also works with the California Department of Forestry, Mount Diablo State Park, and the San Ramon Valley Fire District in addressing wildland fire hazards.

- **The Walnut Creek Police Department** provides police protection services for the Project site.

- **The City of Walnut Creek parks** are maintained by the Parks Division, which is part of the Public Services Department. Walnut Creek has over 400 acres of parks and special-use areas, including seven community parks, ten neighborhood parks, and a municipal golf course.\(^{22}\)

- **The Project site lies within the boundaries of the Walnut Creek School District and the Acalanes Union High School District.**

- **There are two public libraries in Walnut Creek:** the Walnut Creek Downtown Branch at 1644 North Broadway, and the Ygnacio Valley (Thurman G. Casey Memorial) Branch at 2661 Oak Grove Road. The Downtown Branch, which is approximately 0.5 miles to the south of the Project site, is the closest public library to the Project site.

3.4 REQUIRED PERMITS AND APPROVALS

The City of Walnut Creek General Plan designates the parcels as MFVH (Multi-Family Very High, 30.1-50 dwelling unit per acre [du/ac]). Implementation of the proposed Project would require a General Plan Amendment to change the designation to MFSH (Multi-Family Special High, 50.1-100 du/ac) in order to accommodate the Project’s 100 du/ac. There is no residential land use designation that allows density greater than 100 du/ac.

The proposed Project also includes an amendment to the General Plan to increase the maximum building height identified on the General Plan 2025 Core Area Height Limits Map from 50 feet to approximately 60 feet, which would be within the Measure A height limit of 89 feet.

\(^{22}\) Walnut Creek General Plan 2025, Chapter 3, Natural Environment Element, page 3-18.
Implementation of the proposed Project will also require a Zoning Ordinance Amendment from Multi-Family Residential (M-1) to Planned Development (PD) to accommodate the higher density, and potential reduced parking requirement.

The City of Walnut Creek requires the following discretionary permits and approvals for the proposed Project:

- Conditional Use Permit pursuant to regulations pertaining to Overlay Zone 3, regulating access from Ygnacio Valley Road;
- Design Review Approval for a new four-story multiple-family building, parking structure, site development improvements, and landscape;
- Tree Removal Permit to remove the existing trees from the Project site;
- Stormwater Pollution Prevention Plan; and
- Certification of this EIR.
4. Environmental Evaluation

This chapter of the Draft EIR is made up of 12 sub-chapters. The first two describe the format of this Draft EIR and the methodology of the cumulative impact analysis. The remaining 10 sub-chapters evaluate the direct, indirect, and cumulative environmental impacts of the proposed Project. An Initial Study was prepared for the proposed Project (see Appendix A of this Draft EIR). Based on the analysis contained in the Initial Study the potential environmental effects of the proposed Project are analyzed for the following environmental issue areas:

- Aesthetics
- Air Quality
- Biological Resources
- Cultural Resources
- Greenhouse Gas Emissions
- Land Use and Planning
- Noise
- Population and Housing
- Public Services and Recreation
- Transportation and Traffic
4.1 FORMAT OF THE ENVIRONMENTAL ANALYSIS

This chapter describes the format and organization of this Draft EIR. Each sub-chapter is organized into the following sections:

- **Environmental Setting** provides an overview of federal, State, regional and local laws and regulations relevant to each environmental issue, together with a description of the existing environmental conditions, providing a baseline against which the impacts of the proposed Project can be compared.

- **Standards of Significance** refers to the quantitative or qualitative standards or conditions used to compare the existing setting with and without the proposed Project to determine whether the impact is significant. These standards are based primarily on the CEQA Guidelines, and may reflect established health standards, ecological tolerance standards, public service capacity standards, or guidelines established by agencies or experts.

- **Impact Discussion** gives an overview of the potential impacts of the proposed Project and explains why impacts were found to be significant or less than significant prior to mitigation. This subsection also includes a discussion of cumulative impacts of the proposed Project.

- **Summary of Significant Impacts and Mitigation Measures** lists impacts identified as potentially significant, as well as suggested measures that would mitigate each impact. In each case the significance following mitigation is also explained.
4.2 CUMULATIVE IMPACT ANALYSIS

This chapter describes the methodology for the cumulative impact analysis presented in Chapter 4.3 through 4.12 of this Draft EIR. A cumulative impact consists of an impact created as a result of the combination of the project evaluated in the EIR, together with other reasonably foreseeable projects causing related impacts. Section 15130 of the CEQA Guidelines requires an EIR to discuss cumulative impacts of a project when the project’s incremental effect is “cumulatively considerable.” Used in this context, cumulatively considerable means that the incremental effects of an individual project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects. Where the incremental effect of a project is not “cumulatively considerable,” a lead agency need not consider that effect significant, but must briefly describe its basis for concluding that the incremental effect is not cumulatively considerable. Where the cumulative impact caused by the project’s incremental effect and the effects of other reasonably foreseeable projects is not significant, the EIR must briefly indicate why the cumulative impact is not significant.

4.2.1 GEOGRAPHIC AREA FOR CUMULATIVE ANALYSIS

The cumulative discussions in Chapters 4.1 through 4.12 explain the geographic scope of the area affected by each cumulative effect (e.g., immediate plan vicinity, city, county, watershed, or air basin). The geographic area considered for each cumulative impact depends upon the impact that is being analyzed. For example, in assessing aesthetic impacts, only development within the vicinity of the proposed Project would contribute to a cumulative visual effect because the Project site is only visible within the vicinity of the proposed Project. In assessing macro-scale air quality impacts, on the other hand, all development within the San Francisco Bay Area Air Basin contributes to regional emissions of criteria pollutants, and basin-wide projections of emissions is the best tool for determining the cumulative effect.

4.2.2 CUMULATIVE PROJECTS CONSIDERED

The CEQA Guidelines Section 15130 outlines two approaches to analyzing cumulative impacts. The first is the “list approach,” which requires a listing of past, present and reasonably anticipated future projects producing related or cumulative impacts. The second is the projections-based approach wherein the relevant growth projections contained in an adopted General Plan or related planning document designed to evaluate regional or area-wide conditions are summarized. A reasonable combination of the two approaches may also be used.

The cumulative impact analysis in this Draft EIR relies on a projections-based approach from the City of Walnut Creek General Plan 2025 supplemented by an understanding of past, present, and reasonably foreseeable future projects in the vicinity of the Project site that, when considered with the effects of the proposed Project, may result in cumulative effects. The cumulative analysis discussions contained in Chapters 4.1 through 4.12 include a discussion of the growth projections and references to specific projects as relevant to the impact analysis. Specific projects referenced include approved or pending projects in the vicinity of the proposed Project site that are anticipated to be constructed and occupied by 2016 (near-term) and by 2030 (long-range). Specific projects referenced are described in Table 4.2-1 and shown on Figure 4.2-1.
Figure 4.2-1
Cumulative Projects

Source: City of Walnut Creek; The Planning Center | DC&E, 2013; ESRI 2013.
TABLE 4.2-1 CUMULATIVE PROJECTS

<table>
<thead>
<tr>
<th>Site No.</th>
<th>Project Name</th>
<th>Location</th>
<th>Lot Size (Acres)</th>
<th>Residential Units(^{a})</th>
<th>Commercial Square Feet(^{b})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline Projects Anticipated to be Constructed and Occupied by 2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Pleasant Creek Homes</td>
<td>1935 Barkley Avenue</td>
<td>.61</td>
<td>10 single-family attached</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>BRIO Apartments (formerly Paragon)</td>
<td>141 North Civic Drive</td>
<td>5.07</td>
<td>300 multi-family</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>The Village @ 1500 Newell Avenue</td>
<td>1500 Newell Avenue</td>
<td>1.89</td>
<td>49 multi-family</td>
<td>37,000</td>
</tr>
<tr>
<td>4</td>
<td>North Main Apartments (also known as Mill Creek)</td>
<td>1960 North Main Street</td>
<td>1.20</td>
<td>126 multi-family</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>E’lan (formerly Riviera Homes)</td>
<td>1605 Riviera Avenue</td>
<td>0.50</td>
<td>38 condominiums</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Villagewalk II Condos</td>
<td>1725-1727 Lacassie Avenue</td>
<td>0.30</td>
<td>10 condominiums</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Bonanza Heritage Condominiums</td>
<td>1874 and 1882 Bonanza Street, 1826 Sharpe Avenue</td>
<td>0.40</td>
<td>13 condominiums</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1500 N. California</td>
<td>1500 N. California Boulevard</td>
<td>1.23</td>
<td>140 multi-family</td>
<td>18,270</td>
</tr>
<tr>
<td>9</td>
<td>Cole Terrace Subdivision/Condominiums</td>
<td>1756 Cole Avenue</td>
<td>0.35</td>
<td>11 condominiums</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>The Arroyo</td>
<td>1250 Arroyo Way</td>
<td>1.00</td>
<td>100 rental condominiums</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Almond/Oakland Condos</td>
<td>1526 Oakland Boulevard</td>
<td>0.29</td>
<td>11 multi-family</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Broadway Plaza Long-Range Master Plan</td>
<td>Broadway Plaza Shopping Center</td>
<td>25+</td>
<td>–</td>
<td>240,000</td>
</tr>
<tr>
<td>13</td>
<td>Shadelands Gateway Specific Plan</td>
<td>2800 Ygnacio Valley Road</td>
<td>24.76</td>
<td>200 senior units</td>
<td>100,000</td>
</tr>
<tr>
<td>14</td>
<td>1500 Mt. Diablo</td>
<td>1500 Mt. Diablo Boulevard</td>
<td>0.14</td>
<td>12,000</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>1,008</td>
<td>407,270</td>
</tr>
</tbody>
</table>

Future Baseline Projects Anticipated to be Constructed and Occupied by 2030					
15	Third Avenue Apartments	2618 Baldwin Lane	0.86	35 multi-family	
16	Walnut Creek BART Transit Village	200 Ygnacio Valley Road	16.2	596 multi-family	30,000
17	Broadway Plaza Long-Range Master Plan	Broadway Plaza Shopping Center	25+	–	60,000\(^{a}\)
18	Center Place South	South California Boulevard at Olympic Boulevard	1.32	22 condominiums	26,689
Total				**653**	**116,689**

| **Grand Total**| | | | | |
| **Total** | **1,661** | **523,959** |

\(^{a}\) Represents net increase.
\(^{b}\) Represents the remaining development of the Master Plan for a total of 300,000 square feet by year 2030.
Source: City of Walnut Creek, October 2013.
CUMULATIVE IMPACT ANALYSIS
4.3 AESTHETICS

This chapter describes the visual resources on the Project site and in the surrounding area, and evaluates the effects that the proposed Project would have on these resources, including effects on visual character, scenic views and vistas, and scenic resources.

While this chapter analyzes the aesthetic effects of the proposed Project, pursuant to Senate Bill 743 (SB 743) adopted in 2013, the aesthetic impacts of residential or mixed use projects located on an infill site in a “transit priority area” “shall not be considered significant impacts on the environment.” Public Resources Code section 21099(d)(1). “Infill site” is defined as a lot in an urban area that has been previously developed and “transit priority area” means an area within a half mile of a major transit stop, both of which apply to the proposed Project. Public Resources Code section 21071 defines “urbanized area” as an incorporated city with a population over 100,000, or, if the city’s population is less than 100,000, where the population of the city and no more than two adjoining cities exceeds 100,000. While Walnut Creek's population is less than 100,000 people, the combined population of Walnut Creek and Concord, an adjacent city exceeds 100,000. Thus, under this recent amendment to CEQA, any aesthetic impacts of the proposed Project, including impacts to visual character, scenic views and vistas and scenic resources, is not considered an impact on the environment. SB 743 does confirm that the City retains full design review discretion and may address aesthetic issues, but they are considered outside of the CEQA context. For that reason, the information provided in this chapter is for informational purposes.

4.3.1 ENVIRONMENTAL SETTING

4.3.1.1 REGULATORY FRAMEWORK

This section summarizes key City regulations as well as programs related to aesthetics at the Project site. There are no federal or State regulations pertaining to aesthetics that apply to the Project.

Local Policies and Regulations

Walnut Creek General Plan 2025

Goals and Policies

The City of Walnut Creek General Plan 2025, adopted in April 2006, provides guidance to help new development achieve the qualities desired by the community. Chapter 1, Quality of Life, and Chapter 4, Built Environment, include goals and policies aimed at protecting and enhancing the city's physical and visual character. Under the Urban Design section of the Built Environment chapter, the General Plan 2025 specifically includes policies for compatibility of infill development that focus on both the design of buildings and the design of spaces between buildings. The Urban Design section includes a comprehensive set of policies and actions to preserve the scenic qualities and views from scenic corridors, including regulating development intensity, building height, building...
setback, and building stepbacks. Table 4.3-1, enumerates the goals and policies pertaining to urban form and visual character from the Walnut Creek General Plan 2025.

TABLE 4.3-1 GOALS AND POLICIES OF THE WALNUT CREEK GENERAL PLAN 2025

<table>
<thead>
<tr>
<th>Goal/Policy Number</th>
<th>Goal/Policy Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1 Quality of Life</td>
<td></td>
</tr>
<tr>
<td>Goal 1</td>
<td>Protect and enhance the quality of life in the city’s residential neighborhoods.</td>
</tr>
<tr>
<td>Policy 1.4</td>
<td>Require that development is compatible with surrounding uses.</td>
</tr>
<tr>
<td>Policy 1.5</td>
<td>Support neighborhood efforts that strengthen identity and protect or enhance neighborhood character.</td>
</tr>
<tr>
<td>Chapter 4 Built Environment</td>
<td></td>
</tr>
<tr>
<td>Goal 5</td>
<td>Require that infill development is compatible with its surroundings.</td>
</tr>
<tr>
<td>Policy 5.1</td>
<td>Require infill development to be compatible with adjacent and nearby uses.</td>
</tr>
<tr>
<td>Policy 13.1</td>
<td>Maintain urban design and architectural standards for evaluating the scale, appearance, and compatibility of new development proposals.</td>
</tr>
<tr>
<td>Policy 13.2</td>
<td>Regulate building placement and upper-floor stepbacks along important streets in the Core Area.</td>
</tr>
<tr>
<td>Policy 13.3</td>
<td>Coordinate the building heights allowed under the General Plan, zoning ordinance, and Measure A.</td>
</tr>
<tr>
<td>Goal 16</td>
<td>Maintain and enhance Walnut Creek’s identity and sense of place.</td>
</tr>
<tr>
<td>Policy 16.2</td>
<td>Use public art to enliven and beautify the public realm.</td>
</tr>
<tr>
<td>Goal 18</td>
<td>Preserve and enhance the visual amenity provided by the open space, hills, and creeks.</td>
</tr>
<tr>
<td>Policy 18.1</td>
<td>Preserve and enhance the urban connections to scenic views that are so important to residents and visitors.</td>
</tr>
<tr>
<td>Goal 19</td>
<td>Enhance the urban design quality of the Core Area and its subareas.</td>
</tr>
<tr>
<td>Policy 19.2</td>
<td>Improve directional signage for pedestrians and vehicles in the Core Area.</td>
</tr>
<tr>
<td>Goal 26</td>
<td>Develop a comprehensive, integrated plan to preserve the natural environment in the built environment.</td>
</tr>
<tr>
<td>Policy 26.3</td>
<td>Preserve and add to the City’s tree canopy.</td>
</tr>
</tbody>
</table>

Source: Walnut Creek General Plan 2025.
Land Use Designation

Upon Project approval the Project site would be within the Multifamily Special High (MFSH) land use designation. The primary intent of the MFSH land use designation is to expand the potential for downtown living. As discussed above, the Urban Design section of Chapter 4, Built Environment, includes regulations for overall development intensity, building setback, and building stepbacks. Under the MFSH a density range of 50.1-100.0 dwelling units per acre would be permitted. Given its frontage on Ygnacio Valley Road, Lacassie Avenue, and Oakland Boulevard, a Moderate setback requirement of between 10 to 20 feet is required for the portion of the Project site fronting these thoroughfares. A Moderate setback requirement of between 10 to 15 feet is also required along the Project's eastern perimeter.1

Building Height

The City regulates building height in the Built Environment chapter of General Plan 2025, as well as in the Zoning Ordinance. The height limits contained in the General Plan are the same as those stipulated by the Zoning Ordinance (discussed below). Building height affects the city’s appearance and identity, particularly in the pedestrian-scaled areas that comprise the Core Area and the Traditional Downtown. By regulating building heights, the City can protect view corridors, regulate building scale, and ensure consistency and compatibility within an area or along a street.

Scenic Resources

The General Plan 2025 identifies scenic views and corridors, landmarks, and gateways to be preserved and protected. As described in Chapter 4, Built Environment, the views from Walnut Creek to surrounding open spaces, hills, and Mount Diablo are integral to the city’s identity, sense of place, and character. The General Plan 2025 also identifies landmarks and nodes2 as reference points that help people orient themselves in the community. The scenic gateways to City are landmarks, nodes, or views that define an arrival point. They promote community identity by providing unique reference points and orientation. Figures 4.3-1 and 4.3-2 illustrate the key scenic viewpoints, corridors, landmarks and gateways recognized by the 2025 General Plan. As shown on Figure 4.3-1, the Project site is bound by two identified scenic corridors: 1) Ygnacio Valley Road, which runs parallel to the Project site to the north, and 2) the BART line, which runs parallel to the Project site on the west. Additionally, as shown on Figure 4.3-2 there are two General Plan designated scenic viewpoints and one panoramic viewpoint of the Mt. Diablo hills just south of the Project site. As shown on Figure 4.3.2, there are no landmarks or nodes on the Project site; however, the Walnut Creek BART Station, the north of the Project site is identified as a Scenic Landmark.

1 General Plan 2025, Chapter 4, Built Environment, Figure 11, Building Setbacks, page 4-26.
2 Landmarks are prominent physical objects that serve as visual focal points. Nodes are gathering places and significant points of activity.
Figure 4.3-1
General Plan 2025 Scenic Viewpoints and Corridors

Source: Walnut Creek General Plan 2025.
AESTHETICS

THE LANDING AT WALNUT CREEK APARTMENTS PROJECT DRAFT EIR
CITY OF WALNUT CREEK

Figure 4.3-2
General Plan 2025 Landmarks and Gateways

Selected Landmarks
1. Pleasant Hill BART station
2. Lindsay Wildlife Museum in Larkey Park
3. Golden Triangle office buildings
4. Walnut Creek BART station
5. Target
6. Dean Lesher Regional Center for the Arts
7. Civic Park
8. Traditional Downtown at Main/Locust Streets
9. Liberty Bell Plaza
10. Saint Mary’s Church
11. Office buildings at NW corner of Mt. Diablo and California Boulevards
12. The Corners with Oak Tree
13. Fountains at Broadway Plaza
14. Nordstrom
15. Saranap Filling Station
16. Kaiser Permanente Medical Center
17. John Muir Medical Center
18. Heather Farm Park
19. Shadelands Ranch Historical Museum
20. Four Open Space Areas

Source: Walnut Creek General Plan 2025.
AESTHETICS

Zoning Ordinance

Contained in Title 10, Chapter 2 of the Walnut Creek Municipal Code, the City's Zoning Ordinance identifies specific zoning districts within the city and describes the development standards that apply to each district. The Project site is located in the Core Area and under the proposed Project would be zoned Planned Development (PD). The PD zoning district allows more flexible development standards, including higher density, as long as the development complies with the General Plan land use designation. The development standards for the MFSH land use designation are discussed above. The proposed Project's compliance with the Zoning Ordinance is discussed in Chapter 4.8, Land Use and Planning, of this Draft EIR.

Design Review

Title 2, Chapter 1, Section 1.501 of the Walnut Creek Municipal Code establishes a Design Review Commission to develop and enforce design standards, policies, and practices that promote aesthetics, encourage economic vitality, and enhance the design of the City's built environment. Under Title 10, Chapter 2, Section 10-2.4.304 of the Municipal Code, the Design Review Commission is charged with conducting design review of development, including architectural standards and site planning controls. The Design Review process is intended to promote quality architectural design, site planning, and landscape development. The process is aimed at improving and augmenting other development regulations contained in the City of Walnut Creek's planning and building ordinances.

The City's 1996 Design Review Guidelines, prepared by the Planning Division and the Public Information Office under direct review by the Walnut Creek Design Review Commission and updated on July 26, 1999, contains guidelines used to evaluate and review projects proposed for the Commission's approval. The Design Review Guidelines address site relationships, landscape design, off-street parking design, fencing and screening, architecture, signage, and special environmental constraints. The Design Review Guidelines emphasizes building design that addresses the needs of multi-family residential development that respect the scale and character of the adjacent residential neighborhood through attention to views, building scale and orientation, proximity to adjacent uses, location of driveways, noise, lighting and landscape; ensure building facades are articulated by using color, arrangement, or change in materials to emphasize the facade elements; providing functional recreational spaces and/or community site amenities; and having appropriately designed exterior spaces that are designed to enhance the overall appearance and compatibility of such development by providing privacy, buffering and daylight, and to provide a pleasant transition to the street.3

Public Art Master Plan

The Public Art Master Plan provides guidelines for public art in Walnut Creek and encourages the inclusion of public art in development projects. The Master Plan identifies public art zones throughout the city, discusses the roles of the Design Review Commission and Art Commission, identifies criteria and processes to be used in the selection of artwork, and recommends funding sources. The Master Plan envisions artworks such as fountains,

large-scale sculpture, or landscape elements integrated into plaza areas, building exteriors, or streetscapes in the core area, where the Project site is located. The City of Walnut Creek’s Public Art Ordinance (Walnut Creek Municipal Code, Section 10-10.100, et seq.) implements this Master Plan and requires that the Applicant either pay no less than 1 percent of the project’s construction cost into the City’s In-Lieu Public Art Fund or install public art on-site.

Tree Preservation Ordinance

Title 3, Chapter 8, Preservation of Trees on Private Property, of the Municipal Code includes the regulations for the removal and preservation of trees within the City. The City recognizes that preservation of trees enhances the natural scenic beauty, sustains the long-term potential increase in property values that encourages quality development, creates the identity and quality of the City that is necessary for successful business to continue, and improves the attractiveness of the City to visitors. In accordance with the provisions of Chapter 8 under Title 3 of the City’s Municipal Code, the proposed Project would be required to obtain a tree removal permit, as well as follow the regulations related to the preservation and maintenance of existing trees during construction and development. Consistency with the Tree Preservation Ordinance is discussed in Chapter 4.5, Biological Resources, of this Draft EIR.

4.3.1.2 EXISTING CONDITIONS

This section describes the existing visual character of the Project site and its vicinity as well as the scenic resources present in the surrounding area.

Visual Character

The Project site is located in a highly urbanized setting near the western edge of the Core Area of Walnut Creek. Prominent visual features of the regional landscape are described below, along with the visual and aesthetic character of the Project site. An aerial of the Project site is shown further below in Figure 4.3-6.

Visual Features of the Project Site and Surrounding Areas

Located at the base of the hills to the west, the topography of the site is generally flat at 176 feet above mean sea level (msl) with a gradual downhill slope to the eastern border of the site at 156 feet msl. The Project site is largely developed with small wood-framed residential buildings generally dating back to the mid-20th century including 1 two-story apartment complex with 10 units, 3 one-story duplexes and 4 one-story, single-family homes, for a total of 20 units. The existing residential uses contain modest landscaping and a number of mature trees ranging in height from 10 to 40 feet. The southwest corner of the Project site is a vacant lot. Views of the Project site are shown on Figure 4.3-3.

4 City of Walnut Creek, 2000, Public Art Master Plan, page 3.
Figure 4.3-3
Views of the Project Site

Single family and multi-family homes on the Project site fronting Lacassie Avenue are in the middle-ground. A high-rise commercial building across Ygnacio Valley Road can be seen in the background and the surface parking for Walnut Creek Presbyterian Church across Lacassie Avenue from the Project site is in the foreground.

The downhill sloping topography is noticeable from this view off of Lacassie Avenue. Some single-family and multi-family units on the south side of the Project site, fronting Lacassie Avenue, are in the foreground and the three-story commercial buildings along the eastern perimeter are in the background.

This view shows the vacant lot at the southwest corner of the Project site at the cul-de-sac on Lacassie Avenue. While mostly obstructed by existing trees, the hills of Mt. Diablo are slightly visible in the background.

Residential lots facing Ygnacio Valley Road on north side of Project site.

Source: The Planning Center | DC&E, 2013.
The surrounding area features wide streets, with varying block sizes, and building heights capped at between 35 and 50 feet. The property to the east of the Project site is comprised of a three-story commercial office complex. The properties to the south of the Project site, across Lacassie Avenue, include two-story multi-family residential buildings and one-story single-family homes, as well as the Walnut Creek Presbyterian Church surface parking lot. The buildings associated with these uses tend to be low to medium-intensity, generally no more than two stories tall, and are adjoined by tuck-under or medium-sized surface parking areas. Similar to the properties that make up the proposed Project site, these properties also feature modest landscaping and a number of mature ornamental trees ranging from 10 to 40 feet in height.

Separated by multiple lanes at the Ygnacio Valley Road/Oakland Boulevard intersection, the property to the north and northwest of the Project site is occupied by the Walnut Creek BART Station. As previously discussed under the Regulatory Setting, the BART Station is a designated landmark in the General Plan 2025. Also separated by multiple lanes on Oakland Boulevard as well as the elevated BART tracks, the property to the west of the Project site is comprised of commercial office buildings ranging in height from four to five-stories. These properties are well landscaped and include mature trees ranging in height from 10 to 40 feet. Views surrounding the Project site are shown on Figure 4.3-4.

Scenic Corridors and Vistas

Scenic corridors are defined as an enclosed area of landscape, viewed as a single entity that includes the total field of vision visible from a specific point, or series of points along a linear transportation route. Public view corridors are areas in which short-range, medium-range and long-range views are available from publicly accessible viewpoints, such as from city streets. Scenic vistas are generally interpreted as long-range views of a specific scenic feature (e.g. open space lands, mountain ridges, bay, or ocean views). As noted under the Regulatory Setting, due to the views to surrounding open spaces, hills, and Mount Diablo, which are integral to the city’s identity, sense of place, and character, the General Plan 2025 designates Ygnacio Valley Road and the BART line as scenic corridors, and the intersection at North California Boulevard and Ygnacio Valley Road is designated as a gateway to the city.

Existing Viewsheds

Viewsheds refer to the visual qualities of a geographical area that are defined by the horizon, topography, and other natural features that give an area its visual boundary and context, or by development that has become a prominent visual component of the area. Public views are those which can be seen from vantage points that are publicly accessible, such as streets, freeways, parks, and vista points. These views are generally available to a greater number of persons than are private views. Private views are those views that can be seen from vantage points located on private property. Private views are not necessarily considered to be impacted when interrupted by land uses on adjacent properties. As previously shown on Figures 4.3-1 and 4.3-2, there are two General Plan designated scenic viewpoints and one panoramic viewpoint of the Mt. Diablo and surrounding foothills just south of the Project site.
Commercial offices on eastern edge of Project site, taken from Lacassie Avenue.

The elevated BART tracks and mid-rise commercial buildings across Oakland Boulevard to the west of the Project site are visible in the background and the vacant lot on the Project site’s southwest corner is visible in the foreground.

This view shows the Walnut Creek BART Station and elevated BART tracks across the Ygnacio Valley Road/Oakland Boulevard intersection.

This view shows the BART parking lot across Ygnacio Valley Road, screened by landscaping, with mid-rise commercial buildings in the background.

Source: The Planning Center | DC&E, 2013.

Figure 4.3-4
Views Surrounding the Project Site
In the area surrounding the Project site, the existing viewshed is defined primarily by views of the surrounding open spaces, hills, and Mount Diablo that are visible from Ygnacio Valley Road and Oakland Boulevard as well as the BART Station. Therefore, the following viewpoint was identified due to the direct views of the Project site from these locations. This viewpoint is discussed in detail below and the locations of the views from this viewpoint are depicted in Figure 4.3-5.

Ygnacio Valley Road and Oakland Boulevard

As shown on Figure 4.3-5, this viewpoint is at the location of the Ygnacio Valley Road/Oakland Boulevard intersection generally facing east and southeast. View A represents the view from the Walnut Creek BART Station facing southeast. Views B, is taken from a similar location but slightly to the east and View C is taken from the intersection but generally facing due east. Each of these views represent where travelers entering the city and going to and from the BART Station area travel daily. As seen from each of these viewpoints, the scenic resource vistas of the surrounding hills and Mt. Diablo are visible but generally obstructed by the existing landscaping and urban infrastructure (e.g. the BART tracks, fencing, street lights and traffic lights).

The applicant has prepared site line visuals to illustrate the Project’s maximum height as viewed from these scenic viewing locations. These are shown on Figure 4.3-6. In addition, Figure 3-11 in Chapter 3, Project Description, of this Draft EIR also shows the relationship between the elevated BART track and the proposed building.

4.3.2 STANDARDS OF SIGNIFICANCE

An Initial Study was prepared for the proposed Project (see Appendix A of this Draft EIR). Based on the analysis contained in the Initial Study it was determined that development of the proposed Project would not result in significant environmental impacts per the following significance standards and therefore, are not discussed in this chapter.

- Substantially damage scenic resources, including, but not limited to, trees, rock outcroppings and historic buildings within a State scenic highway.
- Create a new source of substantial light or glare that would adversely affect day or nighttime views in the area.

Based on the Initial Study it was determined that the proposed Project would result in a significant aesthetics impact if it would:

1. Have a substantial adverse effect on a scenic vista.
2. Substantially degrade the existing visual character or quality of the site and its surroundings.

However, as discussed above pursuant to SB 743, aesthetic issues are considered to be outside the scope of CEQA. For that reason, the information provided below is for informational purposes only.
Figure 4.3-5
Views from Ygnacio Valley Road and Oakland Boulevard

Source: Google Maps, 2013.
Figure 4.3-6
Aerial and Project Site Lines from Ygnacio Valley Road and Oakland Boulevard

Source: BHV CenterStreet Properties, LLC, 2013.
This section discusses the impacts of the proposed Project on aesthetic resources. This discussion is organized by and responds to each of the potential impacts identified in the Standards of Significance.

AES-1 The proposed Project would not have a substantial adverse effect on a scenic vista.

As previously discussed, in the area surrounding the Project site, the existing viewsheds are defined primarily by open spaces, hills, and Mount Diablo that are visible from the designated scenic corridors and viewpoints in the General Plan 2025. While the natural topography and existing mature trees on the site and adjacent properties limit the open views of these scenic resources, this viewshed could be potentially affected by the Project. As discussed above, one key viewpoint was identified that provides direct views of the Project site from travelers entering the city and consequently could substantially block the view of surrounding scenic resources. As shown on Figure 4.3-5, scenic resource available from this viewpoint are largely obstructed by the existing vegetation on the Project site. As Shown in Figure 4.3-6, while the Project would exceed the existing tree canopy and due to the natural down sloping topography the Project would not block the views from the elevated BART track.

The Project would be consistent with the required setbacks designated in the General Plan that are established to preserve and enhance notable view corridors in the city, General Plan 2025 and the Walnut Creek Municipal Code (i.e. a moderate setback of 10 feet to 20 feet, 15 feet average) on the portions of Oakland Boulevard (which parallels the BART line adjacent to the Project site), and Ygnacio Valley Road surrounding the Project site. This setback will be adequate to minimize the impact of the proposed Project on these scenic corridors.

As shown on Figure 4.3-6, the massing of the proposed building will affect the views from the selected view points by replacing the intermittent views of the sky between the mature trees. Since the topography generally slopes away from the designated panoramic view the impact is lessened. Furthermore due to the proposed building height and setback, neither the surrounding scenic corridors nor the adjacent panoramic view would be adversely affected; resulting in a less-than-significant impact.

Significance Without Mitigation: Less than significant.

AES-2 The proposed Project would not substantially degrade the existing visual character or quality of the site and its surroundings.

While development of the project as proposed would represent a change to the existing visual character of the site from the existing one- and two-story wood frame buildings to a four-story structure covering the majority of the site, the proposed Project would be consistent with the overall urban character within the surrounding Core Area. The design of the Project would also be subject to review by the City’s Design Review Commission to ensure consistency with the City’s Design Review Guidelines. Therefore, development of the proposed Project would not substantially degrade the visual quality of the site or its surroundings and associated impacts would be less-than-significant.
Significance Without Mitigation: Less than significant.

4.3.4 CUMULATIVE IMPACTS

AES-3 The proposed Project, in combination with past, present and reasonably foreseeable projects, would result in less than significant cumulative impacts with respect to aesthetics.

This section analyzes potential cumulative impacts to aesthetics and visual quality that could occur from a combination of the proposed Project with other past, present and reasonably foreseeable projects in the surrounding area. This analysis considers the specific projects listed in Chapter 4.2, Cumulative Impact Analysis, shown in Figure 4.2-1 of this Draft EIR. A cumulative impact would be considered significant if, taken together with past, present and reasonably foreseeable projects in the identified area, it would result in a substantial adverse effect on a designated scenic vista or if it would result in a substantial degradation of the visual quality or character in the vicinity of the Project.

As described above, General Plan 2025 and the Walnut Creek Municipal Code contain provisions to regulate new development in order to maintain and protect scenic resources. These provisions include regulations pertaining to building height limits, setback requirements for buildings along key roadways, development standards from the Zoning Ordinance, and other architectural standards and site planning controls implemented through the design review process. Continued implementation of these existing regulations throughout the city would ensure that cumulative impacts to designated scenic resources and visual character in the vicinity of the Project site would be less than significant. Therefore, overall cumulative impacts would be less than significant.

Significance Without Mitigation: Less than significant.

4.3.5 SUMMARY OF SIGNIFICANT IMPACTS AND MITIGATION MEASURES

The proposed Project would not result in any significant Project-specific or cumulative impacts to aesthetics and, therefore, no mitigation measures are required.
AESTHETICS
4.4 AIR QUALITY

This chapter describes the existing air quality setting and examines the air quality impacts associated with the proposed Project. This chapter is based on the methodology recommended by the Bay Area Air Quality Management District (BAAQMD) for project-level review. The analysis contained herein focuses on air pollution from regional emissions and localized pollutant concentrations. “Emission” refers to the actual quantity of pollutant, measured in pounds per day. “Concentration” refers to the amount of pollutant material per volumetric unit of air. Concentrations are measured in parts per million (ppm) or micrograms per cubic meter (µg/m³). The transportation sector analysis is based on average daily vehicle trips and vehicle miles traveled (VMT) provided by Fehr & Peers. Criteria air pollutant emissions are modeled using the California Emissions Estimator Model (CalEEMod), Version 2013.2.2. Criteria air pollutant emissions modeling for construction and operational phases of the Project is included in Appendix C of this Draft EIR. The Health Risk Assessment (HRA) for construction and operation activities is included in Appendix I.

Environmental Setting

4.4.1.1 REGULATORY FRAMEWORK

Ambient air quality standards (AAQS) have been adopted at State and federal levels for criteria air pollutants. In addition, both the State and federal government regulate the release of toxic air contaminants (TACs). The City of Walnut Creek is in the San Francisco Bay Area Air Basin (SFBAAB) and is subject to the rules and regulations imposed by the BAAQMD, as well as the California AAQS adopted by the California Air Resources Board (CARB) and national AAQS adopted by the United States Environmental Protection Agency (USEPA). Federal, State, regional, and local laws, regulations, plans, or guidelines that are potentially applicable to the proposed Project are summarized below.

Federal and State Laws

Ambient Air Quality Standards

The Clean Air Act (CAA) was passed in 1963 by the U.S. Congress and has been amended several times. The 1970 Clean Air Act amendments strengthened previous legislation and laid the foundation for the regulatory scheme of the 1970s and 1980s. In 1977, Congress again added several provisions, including nonattainment requirements for areas not meeting National AAQS and the Prevention of Significant Deterioration program. The 1990 amendments represent the latest in a series of federal efforts to regulate the protection of air quality in the United States. The CAA allows states to adopt more stringent standards or to include other pollution species. The California Clean Air Act, signed into law in 1988, requires all areas of the State to achieve and maintain the California AAQS by the earliest practical date. The California AAQS tend to be more restrictive than the National AAQS based on even greater health and welfare concerns.

The National and California AAQS are the levels of air quality considered to provide a margin of safety in the protection of the public health and welfare. They are designed to protect “sensitive receptors” most susceptible to
further respiratory distress, such as asthmatics, the elderly, very young children, people already weakened by other disease or illness, and persons engaged in strenuous work or exercise. Healthy adults can tolerate occasional exposure to air pollutant concentrations considerably above these minimum standards before adverse effects are observed.

Both California and the federal government have established health-based AAQS for seven air pollutants, which are shown in Table 4.4-1. These pollutants include ozone (O₃), nitrogen dioxide (NO₂), carbon monoxide (CO), sulfur dioxide (SO₂), coarse inhalable particulate matter (PM₁₀), fine inhalable particulate matter (PM₂.₅), and lead (Pb). In addition, the State has set standards for sulfates, hydrogen sulfide, vinyl chloride, and visibility-reducing particles. These standards are designed to protect the health and welfare of the populace with a reasonable margin of safety.

Table 4.4-1 Ambient Air Quality Standards for Criteria Pollutants

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Averaging Time</th>
<th>California Standard</th>
<th>Federal Primary Standard</th>
<th>Major Pollutant Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozone (O₃)</td>
<td>1 hour</td>
<td>0.09 ppm</td>
<td>*</td>
<td>Motor vehicles, paints, coatings, and solvents.</td>
</tr>
<tr>
<td></td>
<td>8 hours</td>
<td>0.070 ppm</td>
<td>0.075 ppm</td>
<td></td>
</tr>
<tr>
<td>Carbon Monoxide (CO)</td>
<td>1 hour</td>
<td>20 ppm</td>
<td>35 ppm</td>
<td>Internal combustion engines, primarily gasoline-powered motor vehicles.</td>
</tr>
<tr>
<td></td>
<td>8 hours</td>
<td>9.0 ppm</td>
<td>9 ppm</td>
<td></td>
</tr>
<tr>
<td>Nitrogen Dioxide (NO₂)</td>
<td>Annual Average</td>
<td>0.030 ppm</td>
<td>0.053 ppm</td>
<td>Motor vehicles, petroleum-refining operations, industrial sources,</td>
</tr>
<tr>
<td></td>
<td>1 hour</td>
<td>0.18 ppm</td>
<td>0.100 ppm</td>
<td>aircraft, ships, and railroads.</td>
</tr>
<tr>
<td>Sulfur Dioxide (SO₂)</td>
<td>Annual</td>
<td>0.04 ppm</td>
<td>*</td>
<td>Fuel combustion, chemical plants, sulfur recovery plants, and metal</td>
</tr>
<tr>
<td></td>
<td>Arithmetic Mean</td>
<td>0.25 ppm</td>
<td>0.075 ppm</td>
<td>processing.</td>
</tr>
<tr>
<td>Respirable Particulate</td>
<td>Annual</td>
<td>20 µg/m³</td>
<td>*</td>
<td>Dust and fume-producing construction, industrial, and agricultural</td>
</tr>
<tr>
<td>Matter (PM₁₀)</td>
<td>Arithmetic Mean</td>
<td>50 µg/m³</td>
<td>150 µg/m³</td>
<td>operations, combustion, atmospheric photochemical reactions, and</td>
</tr>
<tr>
<td></td>
<td>24 hours</td>
<td></td>
<td></td>
<td>natural activities (e.g., wind-raised dust and ocean sprays).</td>
</tr>
<tr>
<td>Respirable Particulate</td>
<td>Annual</td>
<td>12 µg/m³</td>
<td>12 µg/m³</td>
<td>Dust and fume-producing construction, industrial, and agricultural</td>
</tr>
<tr>
<td>Matter (PM₂.₅)</td>
<td>Arithmetic Mean</td>
<td></td>
<td></td>
<td>operations, combustion, atmospheric photochemical reactions, and</td>
</tr>
<tr>
<td></td>
<td>24 hours</td>
<td>*</td>
<td>35 µg/m³</td>
<td>natural activities (e.g., wind-raised dust and ocean sprays).</td>
</tr>
</tbody>
</table>
TABLE 4.4-1 AMBIENT AIR QUALITY STANDARDS FOR CRITERIA POLLUTANTS

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Averaging Time</th>
<th>California Standard</th>
<th>Federal Primary Standard</th>
<th>Major Pollutant Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead (Pb)</td>
<td>30-Day Average</td>
<td>1.5 µg/m³</td>
<td>*</td>
<td>Present source: lead smelters, battery manufacturing and recycling facilities. Past source: combustion of leaded gasoline.</td>
</tr>
<tr>
<td></td>
<td>Calendar Quarterly</td>
<td>*</td>
<td>1.5 µg/m³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rolling 3-Month Average</td>
<td>*</td>
<td>0.15 µg/m³</td>
<td></td>
</tr>
<tr>
<td>Sulfates (SO₄)</td>
<td>24 hours</td>
<td>25 µg/m³</td>
<td>*</td>
<td>Industrial processes.</td>
</tr>
<tr>
<td>Visibility Reducing Particles</td>
<td>8 hours</td>
<td>ExCo =0.23/km visibility of 10≥ miles</td>
<td>*</td>
<td>Visibility-reducing particles consist of suspended particulate matter, which is a complex mixture of tiny particles that consists of dry solid fragments, solid cores with liquid coatings, and small droplets of liquid. These particles vary greatly in shape, size, and chemical composition, and can be made up of many different materials such as metals, soot, soil, dust, and salt.</td>
</tr>
<tr>
<td>Hydrogen Sulfide</td>
<td>1 hour</td>
<td>0.03 ppm</td>
<td>*</td>
<td>Hydrogen sulfide (H₂S) is a colorless gas with the odor of rotten eggs. It is formed during bacterial decomposition of sulfur-containing organic substances. Also, it can be present in sewer gas and some natural gas, and can be emitted as the result of geothermal energy exploitation.</td>
</tr>
<tr>
<td>Vinyl Chloride</td>
<td>24 hour</td>
<td>0.01 ppm</td>
<td>*</td>
<td>Vinyl chloride (chloroethene), a chlorinated hydrocarbon, is a colorless gas with a mild, sweet odor. Most vinyl chloride is used to make polyvinyl chloride (PVC) plastic and vinyl products. Vinyl chloride has been detected near landfills, sewage plants, and hazardous waste sites, due to microbial breakdown of chlorinated solvents.</td>
</tr>
</tbody>
</table>

Notes: ppm: parts per million; µg/m³: micrograms per cubic meter
* Standard has not been established for this pollutant/duration by this entity.

a. On June 2, 2010, a new 1-hour SO₂ standard was established and the existing 24-hour and annual primary standards were revoked.

Air Pollutants of Concern

Criteria Air Pollutants

The pollutants emitted into the ambient air by stationary and mobile sources are regulated by federal and State law. Air pollutants are categorized as primary and/or secondary pollutants. Primary air pollutants are emitted directly from sources. CO, reactive organic gases (ROG), nitrogen oxides (NOₓ), SO₂, PM₁₀, PM₂.₅, and lead are primary air pollutants. Of these, CO, SO₂, NOₓ, PM₁₀, and PM₂.₅ are “criteria air pollutants,” which means that AAQS have been established for them. ROG and NO₂ are criteria pollutant precursors that form secondary criteria air
pollutants through chemical and photochemical reactions in the atmosphere. O₃ and NO₂ are the principal secondary pollutants.

A description of each of the primary and secondary criteria air pollutants and their known health effects is presented below.

- **Carbon Monoxide** (CO) is a colorless, odorless, toxic gas produced by incomplete combustion of carbon substances, such as gasoline or diesel fuel. CO is a primary criteria air pollutant. CO concentrations tend to be the highest during winter mornings with little or no wind, when surface-based inversions trap the pollutant at ground levels. Because CO is emitted directly from internal combustion engines, motor vehicles operating at slow speeds are the primary source of CO in the SFBAAB. Emissions are highest during cold starts, hard acceleration, stop-and-go driving, and when a vehicle is moving at low speeds. New findings indicate that CO emissions per mile are lowest at about 45 miles per hour (mph) for the average light-duty motor vehicle and begin to increase again at higher speeds. When inhaled at high concentrations, CO combines with hemoglobin in the blood and reduces its oxygen-carrying capacity. This results in reduced oxygen reaching the brain, heart, and other body tissues. This condition is especially critical for people with cardiovascular diseases, chronic lung disease, or anemia, as well as for fetuses. Even healthy people exposed to high CO concentrations can experience headaches, dizziness, fatigue, unconsciousness, and even death.¹ The SFBAAB is designated under the California and National AAQS as being in attainment of CO criteria levels.²

- **Reactive Organic Gases** (ROGs) are compounds composed primarily of hydrogen and carbon atoms. Internal combustion associated with motor vehicle usage is the major source of ROGs. Other sources of ROGs include evaporative emissions from paints and solvents, the application of asphalt paving, and the use of household consumer products such as aerosols. Adverse effects on human health are not caused directly by ROGs, but rather by reactions of ROGs to form secondary pollutants such as O₃. There are no AAQS established for ROGs. However, because they contribute to the formation of O₃, the BAAQMD has established a significance threshold for this pollutant.

- **Nitrogen Oxides** (NOₓ) are a by-product of fuel combustion and contribute to the formation of O₃, PM₁₀, and PM₂.₅. The two major components of NOₓ are nitric oxide (NO) and NO₂. The principal component of NOₓ produced by combustion is NO, but NO reacts with oxygen to form NO₂, creating the mixture of NO and NO₂ commonly called NOₓ. NO₂ acts as an acute irritant and in equal concentrations is more injurious than NO. At atmospheric concentrations, however, NO₂ is only potentially irritating. There is some indication of a relationship between NO₂ and chronic pulmonary fibrosis. Some increase in bronchitis in children (two and three years old) has also been observed at concentrations below 0.3 ppm. NO₂ absorbs blue light; the result is a brownish-red cast to the atmosphere and reduced visibility. NO is a colorless, odorless gas formed from atmospheric nitrogen and oxygen when combustion takes place under high temperature and/or high

¹ Bay Area Air Quality Management District, 2011, California Environmental Quality Act Air Quality Guidelines, Appendix C: Sample Air Quality Setting.

pressure. The SFBAAB is designated an attainment area for NO2 under the National AAQS and California AAQS.3

- **Sulfur Dioxide** (SO2) is a colorless, pungent, irritating gas formed by the combustion of sulfurous fossil fuels. It enters the atmosphere as a result of burning high-sulfur-content fuel oils and coal and from chemical processes at chemical plants and refineries. Gasoline and natural gas have very low sulfur content and do not release significant quantities of SO2. When SO2 forms sulfates (SO4) in the atmosphere, together these pollutants are referred to as sulfur oxides (SOx). Thus, SO2 is both a primary and secondary criteria air pollutant. At sufficiently high concentrations, SO2 may irritate the upper respiratory tract. At lower concentrations and when combined with particulates, SO2 may do greater harm by injuring lung tissue.4 The SFBAAB is designated an attainment area for SO2 under the California and National AAQS.5

- **Suspended Particulate Matter** (PM10 and PM2.5) consists of finely divided solids or liquids such as soot, dust, aerosols, fumes, and mists. Two forms of fine particulates are now recognized and regulated. Inhalable coarse particles, or PM10, include the particulate matter with an aerodynamic diameter of 10 microns (i.e., 10 millionths of a meter or 0.0004 inch) or less. Inhalable fine particles, or PM2.5, have an aerodynamic diameter of 2.5 microns or less (i.e., 2.5 millionths of a meter or 0.0001 inch).

Some particulate matter, such as pollen, occurs naturally. In the SFBAAB most particulate matter is caused by combustion, factories, construction, grading, demolition, agricultural activities, and motor vehicles. Extended exposure to particulate matter can increase the risk of chronic respiratory disease. PM10 bypasses the body’s natural filtration system more easily than larger particles and can lodge deep in the lungs. EPA scientific review concluded that PM2.5 penetrates even more deeply into the lungs, and this is more likely to contribute to health effects—at concentrations well below current PM10 standards. These health effects include premature death in people with heart or lung disease, nonfatal heart attacks, irregular heartbeat, aggravated asthma, decreased lung function, increased respiratory symptoms (e.g., irritation of the airways, coughing, or difficulty breathing). Motor vehicles are currently responsible for about half of particulates in the SFBAAB. Wood burning in fireplaces and stoves is another large source of fine particulates.6

Both PM10 and PM2.5 may adversely affect the human respiratory system, especially in people who are naturally sensitive or susceptible to breathing problems. These health effects include premature death and increased hospital admissions and emergency room visits (primarily the elderly and individuals with cardiopulmonary disease); increased respiratory symptoms and disease (children and individual with asthma); and alterations in lung tissue and structure and in respiratory tract defense mechanisms.7 Diesel particulate matter (DPM) is classified a carcinogen by CARB. The SFBAAB is designated nonattainment under the

4 Bay Area Air Quality Management District, 2011, California Environmental Quality Act Air Quality Guidelines, Appendix C: Sample Air Quality Setting.
6 Bay Area Air Quality Management District, 2011, California Environmental Quality Act Air Quality Guidelines, Appendix C: Sample Air Quality Setting.
California AAQS for PM\textsubscript{10} and a nonattainment area under both the California and National AAQS for PM\textsubscript{2.5}.8

- **Ozone** (O_3) is commonly referred to as “smog” and is a gas that is formed when ROGs and NO\textsubscript{x}, both by-products of internal combustion engine exhaust, undergo photochemical reactions in the presence of sunlight. O_3 is a secondary criteria air pollutant. O_3 concentrations are generally highest during the summer months when direct sunlight, light winds, and warm temperatures create favorable conditions to the formation of this pollutant. O_3 poses a health threat to those who already suffer from respiratory diseases as well as to healthy people. O_3 levels usually build up during the day and peak in the afternoon hours. Short-term exposure can irritate the eyes and cause constriction of the airways. Besides causing shortness of breath, it can aggravate existing respiratory diseases such as asthma, bronchitis, and emphysema. Chronic exposure to high ozone levels can permanently damage lung tissue. O_3 can also damage plants and trees and materials such as rubber and fabrics.9 The SFBAAB is designated a nonattainment area of the 1-hour California AAQS and 8-hour California and National AAQS for O_3.10

- **Lead** (Pb) is a metal found naturally in the environment as well as in manufactured products. The major sources of lead emissions have historically been mobile and industrial sources. As a result of the phase-out of leaded gasoline, metal processing is currently the primary source of lead emissions. The highest levels of lead in air are generally found near lead smelters. Other stationary sources are waste incinerators, utilities, and lead-acid battery manufacturers.

Twenty years ago, mobile sources were the main contributor to ambient lead concentrations in the air. In the early 1970s, the EPA set national regulations to gradually reduce the lead content in gasoline. In 1975, unleaded gasoline was introduced for motor vehicles equipped with catalytic converters. The EPA banned the use of leaded gasoline in highway vehicles in December 1995. As a result of the EPA's regulatory efforts to remove lead from gasoline, emissions of lead from the transportation sector and levels of lead in the air decreased dramatically.11 The SFBAAB is designated in attainment of the California and National AAQS for lead.12 Because emissions of lead are found only in projects that are permitted by BAAQMD, lead is not an air quality of concern for the proposed Project.

Toxic Air Contaminants

Public exposure to TACs is a significant environmental health issue in California. In 1983, the California Legislature enacted a program to identify the health effects of TACs and to reduce exposure to these contaminants to protect the public health. The California Health and Safety Code define a TAC as “an air pollutant which may

9 Bay Area Air Quality Management District, 2011, California Environmental Quality Act Air Quality Guidelines, Appendix C: Sample Air Quality Setting.

11 Bay Area Air Quality Management District, 2011, California Environmental Quality Act Air Quality Guidelines, Appendix C: Sample Air Quality Setting.

cause or contribute to an increase in mortality or in serious illness, or which may pose a present or potential hazard to human health.” A substance that is listed as a hazardous air pollutant pursuant to Section 112(b) of the federal Clean Air Act (42 U.S. Code Section 7412[b]) is a toxic air contaminant. Under State law, the California EPA (Cal/EPA), acting through CARB, is authorized to identify a substance as a TAC if it is an air pollutant that may cause or contribute to an increase in mortality or serious illness, or may pose a present or potential hazard to human health.

California regulates TACs primarily through AB 1807 (Tanner Air Toxics Act) and AB 2588 (Air Toxics “Hot Spot” Information and Assessment Act of 1987). The Tanner Air Toxics Act sets up a formal procedure for CARB to designate substances as TACs. Once a TAC is identified, CARB adopts an “airborne toxics control measure” for sources that emit designated TACs. If there is a safe threshold for a substance (i.e., a point below which there is no toxic effect), the control measure must reduce exposure to below that threshold. If there is no safe threshold, the measure must incorporate toxics best available control technology to minimize emissions. To date, CARB has established formal control measures for 11 TACs that are identified as having no safe threshold.

Air toxics from stationary sources are also regulated in California under the Air Toxics “Hot Spot” Information and Assessment Act of 1987. Under AB 2588, TAC emissions from individual facilities are quantified and prioritized by the air quality management district or air pollution control district. High priority facilities are required to perform a health risk assessment (HRA) and, if specific thresholds are exceeded, are required to communicate the results to the public through notices and public meetings.

By the last update to the TAC list in December 1999, CARB had designated 244 compounds as TACs. Additionally, CARB has implemented control measures for a number of compounds that pose high risks and show potential for effective control. The majority of the estimated health risks from TACs can be attributed to relatively few compounds, the most important being particulate matter from diesel-fueled engines.

In 1998, CARB identified DPM as a TAC. Previously, the individual chemical compounds in diesel exhaust were considered TACs. Almost all diesel exhaust particles are 10 microns or less in diameter. Because of their extremely small size, these particles can be inhaled and eventually trapped in the bronchial and alveolar regions of the lungs.

The BAAQMD’s Community Air Risk Evaluation program was initiated in 2004 to evaluate and reduce health risks associated with exposures to outdoor TACs in the Bay Area. Based on the annual emissions inventory of TACs for the SFBAAB, DPM was found to account for approximately 80 percent of the cancer risk from airborne toxics. The highest DPM concentrations occur in the urban core areas of eastern San Francisco, western Alameda, and northwestern Santa Clara counties. BAAQMD has identified six impacted communities in the Bay Area: Concord, eastern San Francisco, western Alameda County, Redwood City/East Palo Alto, Richmond/San Pablo, and San Jose. The City of Walnut Creek is not one of these six impacted communities. The City of Walnut Creek is not one of these six impacted communities. The major contributor to acute and chronic non-cancer health effects in the SFBAAB is acrolein (C3H4O). Major sources of acrolein include on-road mobile sources and aircraft near freeways and commercial and military airports. Currently CARB does not have

13 California Air Resources Board, 1999, Final Staff Report: Update to the Toxic Air Contaminant List.
certified emission factors or an analytical test method for acrolein. Since the appropriate tools needed to implement and enforce acrolein emission limits are not available, the BAAQMD does not conduct health risk screening analysis for acrolein emissions.15

Bay Area Air Quality Management District

BAAQMD is the agency responsible for assuring that the National and California AAQS are attained and maintained in the SFBAAB. BAAQMD is responsible for:

- Adopting and enforcing rules and regulations concerning air pollutant sources.
- Issuing permits for stationary sources of air pollutants.
- Inspecting stationary sources of air pollutants.
- Responding to citizen complaints.
- Monitoring ambient air quality and meteorological conditions.
- Awarding grants to reduce motor vehicle emissions.
- Conducting public education campaigns.

Air Quality Management Planning

Air quality conditions in the SFBAAB have improved significantly since the BAAQMD was created in 1955.16 The BAAQMD prepares air quality management plans (AQMPs) to attain ambient air quality standards in the SFBAAB. The BAAQMD prepares ozone attainment plans (OAPs) for the National O\textsubscript{3} standard and clean air plans for the California O\textsubscript{3} standard. The BAAQMD prepares these AQMPs in coordination with Association of Bay Area Governments (ABAG) and the Metropolitan Transportation Commission (MTC). The most recent adopted comprehensive plan is the 2010 Bay Area Clean Air Plan, which was adopted on September 15, 2010, and incorporates significant new scientific data, primarily in the form of updated emissions inventories, ambient measurements, new meteorological episodes, and new air quality modeling tools.

BAAQMD 2010 Bay Area Clean Air Plan

The purpose of the 2010 Bay Area Clean Air Plan is to: 1) update the Bay Area 2005 Ozone Strategy in accordance with the requirements of the California CAA to implement all feasible measures to reduce O\textsubscript{3}; 2) consider the impacts of O\textsubscript{3} control measures on PM, TACs, and GHGs in a single, integrated plan; 3) review progress in improving air quality in recent years; and 4) establish emission control measures in the 2009 to 2012 timeframe. The 2010 Bay Area Clean Air Plan also provides the framework for the SFBAAB to achieve attainment of the California AAQS. Areas that meet AAQS are classified attainment areas, while areas that do not meet these standards are classified nonattainment areas. Severity classifications for O\textsubscript{3} range from marginal, moderate, and serious to severe and extreme. The attainment status for the SFBAAB is shown in Table 4.4-2. The SFBAAB is

15 Bay Area Air Quality Management District, 2010, Air Toxics NSR Program, Health Risk Screening Analysis Guidelines.

16 Bay Area Air Quality Management District, 2011, California Environmental Quality Act Air Quality Guidelines, Appendix C: Sample Air Quality Setting.
currently designated a nonattainment area for California and National O₃, California and National PM₂.₅, and California PM₁₀ AAQS.

Table 4.4-2 Attainment Status of Criteria Pollutants in the San Francisco Air Basin

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>State</th>
<th>Federal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozone (O₃) – 1-hour</td>
<td>Nonattainment (serious)</td>
<td>Nonattainment</td>
</tr>
<tr>
<td>Ozone (O₃) – 8-hour</td>
<td>Nonattainment</td>
<td>Classification revoked (2005)</td>
</tr>
<tr>
<td>Respirable Particulate Matter (PM₁₀)</td>
<td>Nonattainment</td>
<td>Unclassified</td>
</tr>
<tr>
<td>Respirable Particulate Matter (PM₂.₅)</td>
<td>Nonattainment</td>
<td>Nonattainment</td>
</tr>
<tr>
<td>Carbon Monoxide (CO)</td>
<td>Attainment</td>
<td>Attainment</td>
</tr>
<tr>
<td>Nitrogen Dioxide (NO₂)</td>
<td>Attainment</td>
<td>Attainment</td>
</tr>
<tr>
<td>Sulfur Dioxide (SO₂)</td>
<td>Attainment</td>
<td>Attainment</td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>Attainment</td>
<td>Attainment</td>
</tr>
<tr>
<td>Sulfates (SO₄)</td>
<td>Attainment</td>
<td>Unclassified</td>
</tr>
<tr>
<td>All others</td>
<td>Unclassified</td>
<td>Unclassified</td>
</tr>
</tbody>
</table>

Contra Costa Transportation Authority

The Contra Costa Transportation Authority (CCTA) is the designated congestion management agency for the county. The CCTA’s congestion management plan (CMP) identifies strategies to respond to future transportation needs, identifies procedures to alleviate and control congestion, and promotes countywide solutions. Pursuant to the EPA’s transportation conformity regulations and the Bay Area Conformity State Implementation Plan (also known as the Bay Area Air Quality Conformity Protocol), the CMP is required to be consistent with the MTC planning process, including regional goals, policies, and projects for the regional transportation improvement program (RTIP). The Metropolitan Transportation Commission (MTC) cannot approve any transportation plan, program, or project unless these activities conform to the State Implementation Plan (SIP).

The federal CAA requires that federal transportation plans be prepared for regions in nonattainment of the federal AAQS. CCTA provides county-level input to MTC during preparation of the regional transportation plan (RTP). The current RTP, Plan Bay Area, was adopted on July 18, 2013. Plan Bay Area was prepared by MTC and the

Association of Bay Area Governments (ABAG). Plan Bay Area incorporates the region’s sustainable communities strategy (SCS) pursuant to Senate Bill 375 (SB 375).18

4.4.1.2 EXISTING CONDITIONS

This section describes existing conditions related to air quality in the Project Area.

San Francisco Air Basin

The BAAQMD is the regional air quality agency for the SFBAAB, which comprises all of Alameda, Contra Costa, Marin, Napa, San Francisco, San Mateo, and Santa Clara counties; the southern portion of Sonoma County; and the southwestern portion of Solano County. Air quality in this area is determined by such natural factors as topography, meteorology, and climate, in addition to the presence of existing air pollution sources and ambient conditions.19

Meteorology

The SFBAAB is characterized by complex terrain, consisting of coastal mountain ranges, inland valleys, and bays, which distort normal wind flow patterns. The Coast Range splits, resulting in a western coast gap, Golden Gate, and an eastern coast gap, Carquinez Strait, which allow air to flow in and out of the SFBAAB and the Central Valley.

The climate is dominated by the strength and location of a semi-permanent, subtropical high-pressure cell. During the summer, the Pacific high-pressure cell is centered over the northeastern Pacific Ocean, resulting in stable meteorological conditions and a steady northwesterly wind flow. Upwelling of cold ocean water from below the surface because of the northwesterly flow produces a band of cold water off the California coast. The cool and moisture-laden air approaching the coast from the Pacific Ocean is further cooled by the presence of the cold water band, resulting in condensation and the presence of fog and stratus clouds along the Northern California coast. In the winter, the Pacific high-pressure cell weakens and shifts southward, resulting in wind flow offshore, the absence of upwelling, and the occurrence of storms. Weak inversions coupled with moderate winds result in a low air pollution potential.

Wind Patterns

During the summer, winds flowing from the northwest are drawn inland through the Golden Gate and over the lower portions of the San Francisco Peninsula. Immediately south of Mount Tamalpais, the northwesterly winds accelerate considerably and come more directly from the west as they stream through the Golden Gate. This

18 Metropolitan Transportation Commission (MTC) and Association of Bay Area Governments (ABAG), 2013. Plan Bay Area, Strategy for a Sustainable Region. March (adopted July 18).

channeling of wind through the Golden Gate produces a jet that sweeps eastward and splits off to the northwest toward Richmond and to the southwest toward San Jose when it meets the East Bay hills.

Wind speeds may be strong locally in areas where air is channeled through a narrow opening, such as the Carquinez Strait, the Golden Gate, or the San Bruno gap. For example, the average wind speed at San Francisco International Airport in July is about 17 knots (from 3:00 p.m. to 4:00 p.m.), compared with only 7 knots at San Jose and less than 6 knots at the Farallon Islands.

The air flowing in from the coast to the Central Valley, called the sea breeze, begins developing at or near ground level along the coast in late morning or early afternoon. As the day progresses, the sea breeze layer deepens and increases in velocity while spreading inland. The depth of the sea breeze depends in large part upon the height and strength of the inversion. If the inversion is low and strong, and hence stable, the flow of the sea breeze will be inhibited and stagnant conditions are likely to result.

In the winter, the SFBAAB frequently experiences stormy conditions with moderate to strong winds, as well as periods of stagnation with very light winds. Winter stagnation episodes are characterized by nighttime drainage flows in coastal valleys. Drainage is a reversal of the usual daytime air-flow patterns; air moves from the Central Valley toward the coast and back down toward the Bay from the smaller valleys within the SFBAAB.

Temperature

Summertime temperatures in the SFBAAB are determined in large part by the effect of differential heating between land and water surfaces. Because land tends to heat up and cool off more quickly than water, a large-scale gradient (differential) in temperature is often created between the coast and the Central Valley, and small-scale local gradients are often produced along the shorelines of the ocean and bays. The temperature gradient near the ocean is also exaggerated, especially in summer, because of the upwelling of cold water from the ocean bottom along the coast. On summer afternoons the temperatures at the coast can be 35 degrees Fahrenheit (°F) cooler than temperatures 15 to 20 miles inland. At night this contrast usually decreases to less than 10°F.

In the winter, the relationship of minimum and maximum temperatures is reversed. During the daytime the temperature contrast between the coast and inland areas is small, whereas at night the variation in temperature is large.

Precipitation

The SFBAAB is characterized by moderately wet winters and dry summers. Winter rains (November through March) account for about 75 percent of the average annual rainfall. The amount of annual precipitation can vary greatly from one part of the SFBAAB to another, even within short distances. In general, total annual rainfall can reach 40 inches in the mountains, but it is often less than 16 inches in sheltered valleys.

During rainy periods, ventilation (rapid horizontal movement of air and injection of cleaner air) and vertical mixing are usually high, and thus pollution levels tend to be low. However, frequent dry periods do occur during the winter where mixing and ventilation are low and pollutant levels build up.
Wind Circulation

Low wind speed contributes to the buildup of air pollution because it allows more pollutants to be emitted into the air mass per unit of time. Light winds occur most frequently during periods of low sun (fall and winter, and early morning) and at night. These are also periods when air pollutant emissions from some sources are at their peak, namely, commuter traffic (early morning) and wood-burning appliances (nighttime). The problem can be compounded in valleys, when weak flows carry the pollutants up-valley during the day, and cold air drainage flows move the air mass down-valley at night. Such restricted movement of trapped air provides little opportunity for ventilation and leads to buildup of pollutants to potentially unhealthful levels.

Inversions

An inversion is a layer of warmer air over a layer of cooler air. Inversions affect air quality conditions significantly because they influence the mixing depth, i.e., the vertical depth in the atmosphere available for diluting air contaminants near the ground. There are two types of inversions that occur regularly in the SFBAAB. Elevation inversions are more common in the summer and fall, and radiation inversions are more common during the winter. The highest air pollutant concentrations in the SFBAAB generally occur during inversions.

Existing Ambient Air Quality

Existing levels of ambient air quality and historical trends and projections in the vicinity of the Project site are best documented by measurements made by the BAAQMD. The air quality monitoring station closest to the city is the Concord Monitoring Station. Data from this station is summarized in Table 4.4-3. The data show occasional violations of the State and federal O₃ standards, state PM₁₀ standard, and federal PM₂.₅ standard. The State and federal CO and NO₂ standards have not been exceeded in the last five years in the vicinity of this monitoring station.

Existing Criteria Air Pollutant Emissions

The existing Project site is developed with 4 single-family residences and 17 multi-family dwelling units. The existing residential uses generate criteria air pollutants from vehicle trips, use of natural gas used for heating and cooling, and other area sources on-site (e.g., refrigerants, aerosols, etc.). According to the traffic study prepared by Fehr & Peers, the existing residences generate 213 daily vehicle trips (640 VMT). The existing operational emissions are summarized in Table 4.4-4.

Sensitive Receptors

Some land uses are considered more sensitive to air pollution than others due to the types of population groups or activities involved. Sensitive population groups include children, the elderly, the acutely ill, and the chronically ill, especially those with cardiorespiratory diseases.
TABLE 4.4-3 AMBIENT AIR QUALITY MONITORING SUMMARY

<table>
<thead>
<tr>
<th>Pollutant/Standard</th>
<th>Number of Days Threshold Were Exceeded and Maximum Levels During Such Violations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2008</td>
</tr>
<tr>
<td>Ozone (O₃)</td>
<td></td>
</tr>
<tr>
<td>State 1-Hour ≥ 0.09 ppm</td>
<td>3</td>
</tr>
<tr>
<td>State 8-hour ≥ 0.07 ppm</td>
<td>8</td>
</tr>
<tr>
<td>Federal 8-Hour > 0.075 ppm</td>
<td>6</td>
</tr>
<tr>
<td>Maximum 1-Hour Conc. (ppm)</td>
<td>0.119</td>
</tr>
<tr>
<td>Maximum 8-Hour Conc. (ppm)</td>
<td>0.089</td>
</tr>
<tr>
<td>Carbon Monoxide (CO)</td>
<td></td>
</tr>
<tr>
<td>State 8-Hour > 9.0 ppm</td>
<td>0</td>
</tr>
<tr>
<td>Federal 8-Hour ≥ 9.0 ppm</td>
<td>0</td>
</tr>
<tr>
<td>Maximum 8-Hour Conc. (ppm)</td>
<td>1.13</td>
</tr>
<tr>
<td>Nitrogen Dioxide (NO₂)</td>
<td></td>
</tr>
<tr>
<td>State 1-Hour ≥ 0.18 (ppm)</td>
<td>0</td>
</tr>
<tr>
<td>Maximum 1-Hour Conc. (ppb)</td>
<td>50.0</td>
</tr>
<tr>
<td>Coarse Particulates (PM₁₀)</td>
<td></td>
</tr>
<tr>
<td>State 24-Hour > 50 µg/m³</td>
<td>1</td>
</tr>
<tr>
<td>Federal 24-Hour > 150 µg/m³</td>
<td>0</td>
</tr>
<tr>
<td>Maximum 24-Hour Conc. (µg/m³)</td>
<td>50.5</td>
</tr>
<tr>
<td>Fine Particulates (PM₂.₅)</td>
<td></td>
</tr>
<tr>
<td>Federal 24-Hour > 35 µg/m³</td>
<td>3</td>
</tr>
<tr>
<td>Maximum 24-Hour Conc. (µg/m³)</td>
<td>60.3</td>
</tr>
</tbody>
</table>

Notes: ppm: parts per million; ppb: parts per billion; µg/m³: or micrograms per cubic meter
a. Data obtained from the Concord 2975 Treat Boulevard Monitoring Station.

Residential areas are also considered sensitive receptors to air pollution because residents (including children and the elderly) tend to be at home for extended periods of time, resulting in sustained exposure to any pollutants present. Other sensitive receptors include retirement facilities, hospitals, and schools.

Recreational land uses are considered moderately sensitive to air pollution. Although exposure periods are generally short, exercise places a high demand on respiratory functions, which can be impaired by air pollution. In addition, noticeable air pollution can detract from the enjoyment of recreation. Industrial, commercial, retail, and office areas are considered the least sensitive to air pollution. Exposure periods are relatively short and intermittent, since the majority of the workers tend to stay indoors most of the time. In addition, the working population is generally the healthiest segment of the public.

The closest sensitive receptors proximate to the Project site include residential areas to the south, across Lacassie Avenue and to the east between commercial developments on the north side of Lacassie Avenue.
TABLE 4.4-4 EXISTING CRITERIA AIR POLLUTANT EMISSIONS INVENTORY

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Reactive Organic Gases (ROG) (Tons/Year)</th>
<th>Nitrogen Oxides (NOx) (Tons/Year)</th>
<th>Respirable Particulate Matter (PM10) (Tons/Year)</th>
<th>Respirable Particulate Matter (PM2.5) (Tons/Year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area Sources</td>
<td>0.12</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Energy Use</td>
<td><0.01</td>
<td>0.02</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Mobile Sources</td>
<td>0.09</td>
<td>0.05</td>
<td>0.09</td>
<td>0.02</td>
</tr>
<tr>
<td>Total</td>
<td>0.21</td>
<td>0.07</td>
<td>0.09</td>
<td>0.03</td>
</tr>
<tr>
<td>Average Daily Emissions (lbs/day)</td>
<td>1.13</td>
<td>0.38</td>
<td>0.48</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Source: CalEEMod 2013.2.2. Average daily emissions based on annual emissions divided by 365 days per year. Assumes existing residents do not have wood-burning or gas fireplaces.

4.4.2 STANDARDS OF SIGNIFICANCE

4.4.2.1 CEQA THRESHOLDS

An Initial Study was prepared for the proposed Project (see Appendix A of this Draft EIR). Based on the analysis contained in the Initial Study it was determined that development of the proposed Project would not result in significant environmental impacts per the following significance standard and therefore, it is not discussed in this chapter:

- Create objectionable odors affecting a substantial number of people.

Based on the Initial Study it was determined that the proposed Project would have a significant effect on the environment with respect to air quality if it would:

1. Conflict with or obstruct implementation of the applicable air quality plan.
2. Violate any air quality standard or contribute substantially to an existing or projected air quality violation.
3. Result in a cumulatively considerable net increase of any criteria pollutant for which the Project region is in nonattainment under an applicable federal or State ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors).
4. Expose sensitive receptors to substantial pollutant concentrations.
4.4.2.2 BAAQMD THRESHOLDS

The BAAQMD adopted CEQA Guidelines in June 2010, which were revised in May 2011. The BAAQMD CEQA Guidelines include methodology and thresholds for criteria air pollutant impacts and community health risk for plan-level and project-level analyses. The proposed Project qualifies as a project-level project under BAAQMD’s criteria. The BAAQMD’s Guidelines include project-level significance criteria that would be applicable to the proposed Project. For project-level analyses, BAAQMD has adopted screening criteria and significance criteria that would be applicable to the proposed Project. If a project exceeds the screening level, it would be required to conduct a full analysis using the BAAQMD’s significance criteria:

Criteria Air Pollutants

Regional Significance Criteria

The BAAQMD’s criteria for regional significance for projects that exceed the screening thresholds are shown in Table 4.4-5. Criteria for both the construction and operational phases of the Project are shown.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Construction Phase</th>
<th>Operational Phase</th>
<th>Maximum Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average Daily Emissions (Pounds/Day)</td>
<td>Average Daily Emissions (Pounds/Day)</td>
<td>Emissions (Tons/Year)</td>
</tr>
<tr>
<td>Reactive Organic Gases (ROG)</td>
<td>54</td>
<td>54</td>
<td>10</td>
</tr>
<tr>
<td>Nitrogen Oxides (NOx)</td>
<td>54</td>
<td>54</td>
<td>10</td>
</tr>
<tr>
<td>Respirable Particulate Matter (PM10)</td>
<td>82 (Exhaust)</td>
<td>82</td>
<td>15</td>
</tr>
<tr>
<td>Respirable Particulate Matter (PM2.5)</td>
<td>54 (Exhaust)</td>
<td>54</td>
<td>10</td>
</tr>
<tr>
<td>PM10 and PM2.5 Fugitive Dust</td>
<td>Best Management Practices</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

20 BAAQMD’s CEQA Guidelines were reposted without the screening and significance thresholds tables in 2012 after the March 5, 2012, trial court ruling in California Building Industry Association v. Bay Area Air Quality Management District (Superior Court Case No. RG10548693). However, on August 13, 2013, the Court of Appeals reversed the trial court ruling and found that promulgation of thresholds of significance by a public agency is not a “project” subject to CEQA review. However, the California Supreme Court recently granted limited review of the case, so BAAQMD has not reinstated its previously adopted thresholds. Although, BAAQMD is still not recommending its original thresholds, the thresholds are supported by appropriate studies and analysis (see http://www.baaqmd.gov/Divisions/Planning-and-Research/CEQA-GUIDELINES/Tools-and-Methodology.aspx). Accordingly, pursuant to its discretion under State CEQA Guidelines section 15064 (b) (“lead agencies may exercise their discretion on what criteria to use”) and the recent holding in Citizens for Responsible Equitable Environmental Development v. City of Chula Vista (2011) 197 Cal.App.4th 327, 335-336 (“The determination of whether a project may have a significant effect on the environment calls for careful judgment on the part of the public agency involved, based to the extent possible on scientific and factual data.”), the City has decided to apply the BAAQMD CEQA thresholds to the Project.
Local CO Hotspots

Congested intersections have the potential to create elevated concentrations of CO, referred to as CO hotspots. The significance criteria for CO hotspots are based on the California AAQS for CO, which is 9.0 ppm (8-hour average) and 20.0 ppm (1-hour average). However, with the turnover of older vehicles, introduction of cleaner fuels, and implementation of control technology, the SFBAAB is in attainment of the California and National AAQS, and CO concentrations in the SFBAAB have steadily declined. Because CO concentrations have improved, the BAAQMD does not require a CO hotspot analysis if the following criteria are met:

- The Project is consistent with an applicable congestion management program established by the County Congestion Management Agency for designated roads or highways, the RTP, and local congestion management agency plans.
- The Project would not increase traffic volumes at affected intersections to more than 44,000 vehicles per hour.
- The Project traffic would not increase traffic volumes at affected intersections to more than 24,000 vehicles per hour where vertical and/or horizontal mixing is substantially limited (e.g., tunnel, parking garage, bridge underpass, natural or urban street canyon, below-grade roadway).21

Odors

The BAAQMD’s thresholds for odors are qualitative. The BAAQMD does not consider odors generated from use of construction equipment and activities to be objectionable. For operational phase odor impacts, a project that would result in the siting of a new source of odor or exposure of a new receptor to existing or planned odor sources should consider odor impacts. The BAAQMD considers potential odor impacts to be significant if there are five confirmed complaints per year from a facility, averaged over three years. The BAAQMD has established odor screening thresholds for land uses that have the potential to generate substantial odor complaints, including wastewater treatment plants, landfills or transfer stations, composting facilities, confined animal facilities, food manufacturing, and chemical plants.22

Community Risk and Hazards

The BAAQMD’s significance thresholds for local community risk and hazard impacts apply to both the siting of a new source and to the siting of a new receptor. Local community risk and hazard impacts are associated with TACs and PM_{2.5} because emissions of these pollutants can have significant health impacts at the local level. For assessing community risk and hazards, sources within a 1,000-foot radius are considered. Sources are defined as freeways, high volume roadways (with volumes of 10,000 vehicles or more per day or 1,000 trucks per day), and permitted sources.23 The City of Walnut Creek and Contra Costa County do not have a qualified risk reduction plan.

21 Bay Area Air Quality Management District, 2011 (Revised), California Environmental Quality Act Air Quality Guidelines.
22 Bay Area Air Quality Management District, 2011 (Revised), California Environmental Quality Act Air Quality Guidelines.
23 Bay Area Air Quality Management District, 2011 (Revised), California Environmental Quality Act Air Quality Guidelines.
The proposed Project involves residential uses and is therefore not a major source of operational TACs and stationary PM$_{2.5}$. However, the Project is a sensitive land use that would warrant an on-site community risk and hazards evaluation. In addition, the proposed Project would generate TACs and PM$_{2.5}$ during construction activities that could elevate concentrations of air pollutants at the surrounding residential receptors. The thresholds for construction-related local community risk and hazard impacts are the same as for Project operations. The BAAQMD has adopted screening tables for air toxics evaluation during construction. Construction-related TAC and PM impacts should be addressed on a case-by-case basis, taking into consideration the specific construction-related characteristics of each project and proximity to off-site receptors, as applicable. Therefore, the thresholds identified below are applied to the Project's construction emissions.

Community Risk and Hazards

Project

Project-level emissions of TACs or PM$_{2.5}$ from individual sources within 1,000 feet of the Project that exceed any of the thresholds listed below are considered a potentially significant community health risk:

- Non-compliance with a qualified Community Risk Reduction Plan.
- An excess cancer risk level of more than 10 in one million, or a non-cancer (i.e., chronic or acute) hazard index greater than 1.0 would be a significant cumulatively considerable contribution.
- An incremental increase of greater than 0.3 micrograms per cubic meter (μg/m3) annual average PM$_{2.5}$ from a single source would be a significant cumulatively considerable contribution.

Cumulative

Cumulative sources represent the combined total risk values of each of the individual sources within the 1,000-foot evaluation zone. A project would have a cumulatively considerable impact if the aggregate total of all past, present, and foreseeable future sources within a 1,000-foot radius from the fence line of a source or location of a receptor, plus the contribution from the Project, exceeds the following:

- Non-compliance with a qualified Community Risk Reduction Plan; or
- An excess cancer risk level of more than 100 in one million or a chronic non-cancer hazard index (from all local sources) greater than 10.0; or
- 0.8 μg/m3 annual average PM$_{2.5}$.

24 Bay Area Air Quality Management District, 2010, Screening Tables for Air Toxics Evaluations during Construction.
25 Bay Area Air Quality Management District, 2011 (Revised), California Environmental Quality Act Air Quality Guidelines.
26 Bay Area Air Quality Management District, 2011 (Revised), California Environmental Quality Act Air Quality Guidelines.
27 Bay Area Air Quality Management District, 2011 (Revised), California Environmental Quality Act Air Quality Guidelines.
AIR QUALITY

4.4.3 IMPACT DISCUSSION

4.4.3.1 METHODOLOGY

Criteria air pollutants emissions from construction and operation of the Project were calculated using CalEEMod, Version 2013.2.2. Construction emissions are based on the construction schedule, demolition volumes, haul volumes, and a preliminary list of construction equipment provided by the applicant. Transportation emissions are based on trip generation and VMT provided by Fehr & Peers. A Health Risk Assessment (HRA) for operation and construction activities was conducted for the project using ISCST3.

This section discusses the Project-specific and cumulative impacts related to air quality.

<table>
<thead>
<tr>
<th>AIR-1</th>
<th>The Project would not conflict with or obstruct implementation of the applicable air quality plan.</th>
</tr>
</thead>
</table>

Large projects that exceed regional employment, population, and housing planning projections have the potential to be inconsistent with the regional inventory compiled as part of BAAQMD’s 2010 CAP. The Project is not considered a regionally significant project that would affect regional VMT and warrant Intergovernmental Review by MTC pursuant to the CEQA Guidelines (CEQA Guidelines Section 15206). In addition, the proposed Project would not exceed the level of population or housing foreseen in City or regional planning efforts (see Chapter 4.12, Population and Housing, of this Draft EIR) and, therefore, would not have the potential to substantially affect housing, employment, and population projections within the region, which is the basis of the CAP projections. Furthermore, the net increase in regional emissions generated by the proposed Project would be less than the BAAQMD’s emissions thresholds (see Table 4.4-6 and 4.4-7). These thresholds are established to identify projects that have the potential to generate a substantial amount of criteria air pollutants. Because the proposed Project would not exceed these thresholds, the proposed Project would not be considered by the BAAQMD to be a substantial emitter of criteria air pollutants. Further, the Project promotes several of the transportation and land use control measures identified in the CAP that promote mixed-use, compact development that reduces motor vehicle travel. Therefore, the Project would not conflict with or obstruct implementation of the 2010 CAP and impacts would be considered less than significant.

Significance Without Mitigation: Less than significant.

<table>
<thead>
<tr>
<th>AIR-2a</th>
<th>During construction, the Project could violate an air quality standard or contribute substantially to an existing or projected air quality violation.</th>
</tr>
</thead>
</table>

BAAQMD has identified thresholds of significance for criteria pollutant emissions and criteria air pollutant precursors, including ROG, NOx, PM10 and PM2.5. Development projects below the significance thresholds are not expected to generate sufficient criteria pollutant emissions to violate any air quality standard or contribute substantially to an existing or projected air quality violation.
Construction Emissions

Construction activities produce combustion emissions from various sources, such as onsite heavy-duty construction vehicles, vehicles hauling materials to and from the site, and motor vehicles transporting the construction crew. Site preparation activities produce fugitive dust emissions (PM$_{10}$ and PM$_{2.5}$) from demolition and soil-disturbing activities, such as grading and excavation. Air pollutant emissions from construction activities onsite would vary daily as construction activity levels change.

The BAAQMD’s screening thresholds are not applicable for projects that have overlap of construction phases (e.g., demolition, grading, paving and building construction would occur simultaneously), construction of mixed-use projects, projects that require extensive site preparation, or sites that require extensive material transport (i.e., greater than 10,000 cubic yards of import/export). The proposed Project would necessitate substantial demolition volumes. Therefore, a quantified analysis of the Project’s construction emissions was conducted using CalEEMod.

Fugitive Dust

As identified above, the proposed Project would warrant substantial building demolition and would result in the export of soil to accommodate partially below grade parking garage/podium. In addition, ground disturbing activities would generate fugitive dust. Fugitive dust emissions (PM$_{10}$ and PM$_{2.5}$) are considered to be significant unless the proposed Project implements the BAAQMD’s Best Management Practices (BMPs) for fugitive dust control during construction. The PM$_{10}$ is typically the most significant source of air pollution from the dust generated from construction. The amount of dust generated during construction would be highly variable and is dependent on the amount of material being demolished, the type of material, moisture content, and meteorological conditions. If uncontrolled, PM$_{10}$ and PM$_{2.5}$ levels downwind of actively disturbed areas could possibly exceed State standards. Consequently, construction-related criteria pollutant emissions are potentially significant.

Construction Exhaust Emissions

Construction activities are anticipated to commence in March 2015 and be completed in approximately 22 months. Construction emissions have been calculated based on the preliminary construction schedule and equipment list provided by the Applicant and are based on the number of days each piece of equipment would be mobilized onsite. To determine potential construction-related air quality impacts, criteria air pollutants generated by Project-related construction activities are compared to the BAAQMD significance thresholds in Table 4.4-6 for average daily emissions. Average daily emissions are based on the annual construction emissions divided by the total number of active construction days (see Appendix C). As shown in Table 4.4-6, criteria air pollutant emissions from construction equipment exhaust would not exceed the BAAQMD average daily thresholds. Consequently, construction-related criteria pollutant emissions are less than significant.
TABLE 4.4-6 CONSTRUCTION-RELATED CRITERIA AIR POLLUTANT EMISSIONS

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Construction Emissions (lbs/day)a</th>
<th>ROG</th>
<th>NOx</th>
<th>Fugitive PM10b</th>
<th>Exhaust PM10</th>
<th>Fugitive PM2.5b</th>
<th>Exhaust PM2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Daily Construction Emissions (All Phases)</td>
<td>11</td>
<td>43</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Threshold (avg. lbs/day)</td>
<td>54</td>
<td>54</td>
<td>BMPs</td>
<td>82</td>
<td>BMPs</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>Exceeds Threshold?</td>
<td>No</td>
<td>No</td>
<td>Mitigation</td>
<td>No</td>
<td>Mitigation</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

Notes: lbs = pounds; ROG = reactive organic gases; NOx = nitrogen oxides; PM = particulate matter; avg = average; BMPs = Best Management Practices.

a. Construction phasing, equipment use (number of equipment, days of equipment mobilization onsite), and demolition and grading volumes are based on the preliminary information provided by the applicant. Where specific information regarding project-related construction activities was not available, construction assumptions were based on CalEEMod defaults, which are based on construction surveys conducted by SCAQMD of construction equipment and phasing for comparable projects.

b. Includes implementation of best management practices for fugitive dust control required by BAAQMD as mitigation, including watering disturbed areas a minimum of two times per day, reducing speed limit to 15 miles per hour on unpaved surfaces, and street sweeping.

Source: CalEEMod 2013.2.2. Totals may not sum to 100 percent due to rounding. Average daily emissions are based on the construction emissions divided by the total number of active construction days.

Existing federal, State, and local regulations and policies described throughout this chapter protect local and regional air quality. Continued compliance with these regulations and implementation of existing regulations would further reduce impacts.

The amount of dust generated during construction would be highly variable and is dependent on the amount of material being demolished, the type of material, moisture content, and meteorological conditions. If uncontrolled, PM10 and PM2.5 levels downwind of actively disturbed areas could possibly exceed State standards. Consequently, construction-related criteria pollutant emissions are significant.

Significance Without Mitigation: Significant.

AIR-2b During operation, the Project would not violate any air quality standard or contribute substantially to an existing or projected air quality violation.

The BAAQMD has identified thresholds of significance for criteria pollutant emissions and criteria air pollutant precursors, including ROG, NOx, PM10, and PM2.5. Development projects below the significance thresholds are not expected to generate sufficient criteria pollutant emissions to violate any air quality standard or contribute substantially to an existing or projected air quality violation.

Operational Emissions

Long-term air pollutant emissions generated by a residential development are typically associated with the burning of fossil fuels in cars and trucks (mobile sources); energy use for cooling, heating, and cooking (energy); and landscape equipment (area sources). The primary source of long-term criteria air pollutant emissions generated by
the proposed Project would be emissions produced from Project-generated vehicle trips. The proposed Project would generate 1,020 average daily trips and 3,060 VMT. Table 4.4-7 identifies the existing, total, and net increase in criteria air pollutant emissions associated with the proposed Project.

As shown in Table 4.4-7, the net increase in operational emissions generated by the Project would not exceed the BAAQMD daily thresholds. Consequently, the proposed Project would not cumulatively contribute to the nonattainment designations of the Air Basin, and regional operational phase air quality impacts would be less than significant.

Existing federal, State, and local regulations and policies described throughout this chapter protect local and regional air quality. Continued compliance with these regulations and implementation of existing regulations would further reduce impacts.

Significance Without Mitigation: Less than significant.

Table 4.4-7 Project Criteria Air Pollutant Emissions Inventory

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Existing Emissions (Tons/Year)</th>
<th>Proposed Project Emissions (Tons/Year)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ROG</td>
<td>NOx</td>
</tr>
<tr>
<td>Area Sources</td>
<td>0.12</td>
<td><0.01</td>
</tr>
<tr>
<td>Energy Use</td>
<td><0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>Mobile Sources</td>
<td>0.09</td>
<td>0.05</td>
</tr>
<tr>
<td>Total</td>
<td>0.21</td>
<td>0.07</td>
</tr>
<tr>
<td>Total (lbs/day)</td>
<td>1.13</td>
<td>0.38</td>
</tr>
</tbody>
</table>

Table 4.4-7 Project Criteria Air Pollutant Emissions Inventory

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>ROG (Tons/Year)</th>
<th>NOx (Tons/Year)</th>
<th>PM10 (Tons/Year)</th>
<th>PM2.5 (Tons/Year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area Sources</td>
<td>1.25</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Energy Use</td>
<td><0.01</td>
<td>0.04</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Mobile Sources</td>
<td>0.34</td>
<td>0.20</td>
<td>0.33</td>
<td>0.09</td>
</tr>
<tr>
<td>Total</td>
<td>1.59</td>
<td>0.25</td>
<td>0.34</td>
<td>0.10</td>
</tr>
</tbody>
</table>

| Total (lbs/day) | 8.69 | 1.39 | 1.84 | 0.54 |
| Threshold | 54 | 54 | 82 | 54 |

Note: ROG = reactive organic gases; NOx = nitrogen oxides, PM = particulate matter; lbs = pounds
Source: CalEEMod 2013.2.2. Based on the trip generation and VMT for the project provided by Fehr & Peers. Existing structures are pre-2005 Building and Energy Efficiency Standards. New and renovated buildings would be constructed to the 2013 Building & Energy Efficiency Standards (effective January 1, 2014)

AIR-3 The Project would not result in a cumulatively considerable net increase of any criteria pollutant for which the Project region is in nonattainment under an applicable federal or State ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors).

This section analyzes potential impacts related to air quality that could occur from a combination of the proposed Project with other past, present, and reasonably foreseeable projects within the Air Basin. Any project that produces a significant project-level regional air quality impact in an area that is in nonattainment adds to the cumulative impact. Due to the extent of the area potentially impacted from cumulative project emissions (the Air Basin); a project is cumulatively significant when project-related emissions exceed the BAAQMD emissions thresholds shown in Table 4.4-5. As described in this chapter, the proposed Project would have no impact or less-than-significant construction impacts with mitigation, operational impacts (including AQMP consistency, odors, and CO hotspots), and on-site community risk and hazards impacts with mitigation.

The proposed Project would site new sensitive receptors near major sources of TACs or generate new sources of TACs. In addition, adjacent sensitive land uses could be potentially impacted by construction activities and cumulative emissions of TACs. Existing stationary sources and high volume roadways were reviewed using...
BAAQMD’s screening analysis tools. Eight existing stationary sources (seven emergency diesel generators and one gasoline station), one area source (Walnut Creek BART Station bus loop area) and seven high volume roadway (I-680, on/off-ramps and interchange segments, Ygnacio Valley Road, California Boulevard, and Main Street) were identified within 1,000 feet of the Project site. As described in this chapter under AIR-4, operational and construction activities would result in less-than-significant impacts to sensitive receptors with mitigation and would not contribute to existing TAC sources to create an exceedance of BAAQMD’s cumulative thresholds of significance.

Therefore, the proposed Project’s contribution to cumulative air quality impacts would be less than significant.

Existing federal, State, and local regulations and policies described throughout this chapter protect local and regional air quality. Continued compliance with these regulations and implementation of existing regulations would reduce impacts.

Significance Without Mitigation: Less than significant.

| AIR-4a | The Project would expose off-site sensitive receptors to substantial pollutant concentrations from construction activities. |

Off-Site Community Risk and Hazards During Construction

The proposed Project would elevate concentrations of TACs and PM$_{2.5}$ in the vicinity of sensitive land uses during construction activities. The BAAQMD has developed screening thresholds for assessing potential health risks from construction activities. The Project site is 1.78 acres and therefore receptors would have to be located more than 95 meters away (312 feet) to fall below the BAAQMD’s screening thresholds. The nearest residential housing is located approximately 70 feet south from the Project. Consequently, a full HRA of TACs and PM$_{2.5}$ was prepared.

Construction sources evaluated in the HRA include off-road construction equipment. The US EPA ISCST3 dispersion modeling program was used to estimate excess lifetime cancer risks and acute and chronic non-cancer hazard indexes at the nearest sensitive receptors. Results of the analysis are shown in Table 4.4-8.

29 Bay Area Air Quality Management District (BAAQMD), 2010. Screening Tables for Air Toxics Evaluation During Construction.
It should be noted that these health impacts were based on conservative (i.e., health protective) assumptions. The US EPA and Office of Environmental Health Hazard Assessment (OEHHA) note that conservative assumptions used in a risk assessment are intended to ensure that the estimated risks do not underestimate the actual risks. Therefore, the estimated risks do not necessarily represent actual risks experienced by populations at or near a site. The use of conservative assumptions tends to produce upper-bound estimates of risk and usually overestimate exposure and thus risk. The results of the HRA are based on the maximum receptor concentration over a 1.8-year construction exposure period, assuming 24-hour outdoor exposure, and averaged over a 70-year lifetime. The results of the HRA indicate that the incremental cancer risk for sensitive receptors proximate to the site during the construction period is 7.5×10^{-6} (7.5 per million) for the adult-scenario and 40×10^{-6} (40 per million) for the child-scenario, which could exceed the cancer risk threshold. For noncarcinogenic effects, the hazard index identified for each toxicological endpoint totaled less than one. Therefore, chronic non-carcinogenic hazards are within acceptable limits. In addition, PM$_{2.5}$ annual concentrations would exceed the BAAQMD significance thresholds. Consequently, the Project would expose sensitive receptors to substantial concentrations of air pollutant emissions during construction and impacts would be potentially significant.

Existing federal, State, and local regulations and policies described throughout this chapter protect local and regional air quality, including compliance with BAAQMD Regulation 11, Rule 2, which requires control of emissions of asbestos during demolition and renovation. Continued compliance with these regulations would reduce impacts.

Construction emissions could exceed the cancer risk and PM$_{2.5}$ thresholds and potentially expose sensitive receptors to substantial pollutant concentrations.

Significance Without Mitigation: Significant.

31 For the child exposure scenario, a 9-year exposure period and age sensitivity factor of 4.7 was used to account for the increased sensitivity of children to air pollutants, as per BAAQMD and Office of Environmental Health and Hazard Assessment (OEHHA) guidance.
The Project would not expose on-site sensitive receptors to substantial pollutant concentrations from off-site emission sources.

On-Site Community Risk and Hazards

On-site health risks and hazards imposed by existing sources (e.g., stationary sources and traffic on adjacent streets and freeways) on the sensitive receptors of the Project (i.e., residents in the apartments) were evaluated pursuant to BAAQMD’s methodology. BAAQMD has developed screening thresholds for assessing potential health risks from stationary and mobile sources located within 1,000 feet of the proposed Project. To evaluate nearby sources, BAAQMD’s database of existing sources and freeway and surface street screening tables for Contra Costa County were used. In instances where the screening level cancer risk for mobile or stationary sources exceeded the BAAQMD cancer risk significance thresholds, the US EPA ISCST3 dispersion modeling program was used to estimate excess lifetime cancer risks and acute and chronic non-cancer hazard indexes at the proposed Project.

Stationary sources as listed in Table 4.4-9 near the Project site were identified using BAAQMD’s Stationary Source Screening Analysis Tool.32 Eight stationary sources were identified within 1,000 feet of the proposed Project. Based on information received from BAAQMD using the District’s Stationary Source Inquiry Form, seven of the eight stationary sources would exceed BAAQMD’s screening thresholds for cancer risk.33 However, after taking into account the distance from the stationary sources to the Project using BAAQMD’s diesel and gasoline station distance multipliers, each individual source would not exceed BAAQMD’s project-level health risk thresholds.

The mobile sources identified within 1,000 feet of the proposed Project include Interstate 680 (I-680), on- and off-ramps to Ygnacio Valley Road from I-680, the interchange segment from southbound I-680 to westbound State Route 24 (SR-24), Ygnacio Valley Road, California Boulevard, and Main Street. Vehicular emissions were calculated using traffic volumes obtained from the California Department of Transportation (CalTrans) for highway segments and the California Environmental Health Tracking Program (CEHTP) for high volume roadways.34,35 Vehicular emission factors were obtained using CARB’s emission factor model (EMFAC2011). Based on air dispersion modeling results, the mobile sources would not exceed BAAQMD’s significance thresholds for cancer risk, chronic hazards, and PM2.5.

In addition to stationary and mobile sources, the Walnut Creek BART Station was identified as an emission source of TACs due to diesel buses traveling to-and-from the BART Station. The bus loop portion of the BART Station was evaluated as an area source using bus trip information obtained from Illingworth & Rodkin’s Air Quality and Health Risk Assessment for The City of Walnut Creek BART Transit Village Draft EIR (Illingworth & Rodkin,

34 Highway traffic volumes can be accessed from CalTrans’ website at http://traffic-counts.dot.ca.gov/

35 High volume roadway traffic volumes can be accessed from CEHTP’s website at http://www.ehib.org/traffic_tool.jsp
Air dispersion modeling results indicated an excess cancer risk of 8.5 \times 10^{-6} (8.5 per million), which could exceed the cancer risk threshold.

The results of the Project-level on-site community risk summary, provided in Table 4.4-9, indicate that the excess cancer risk from each individual stationary and mobile source within 1,000 feet from the project are less than the BAAQMD threshold of 10 in a million for a lifetime cancer risk and the non-carcinogenic chronic hazard index of 1.0. In addition, \(\text{PM}_{2.5} \) concentrations are below the BAAQMD significance threshold of 0.3 \(\mu \text{g/m}^3 \) for all emission sources. Therefore, the results of this health risk assessment, with respect to on-site risk during the operational phase of the project, indicate that the impact would be less than significant.

Existing federal, State, and local regulations and policies described throughout this chapter protect local and regional air quality. Continued compliance with these regulations would reduce impacts.

Significance Without Mitigation: Less than significant.

TABLE 4.4-9 PROJECT ON-SITE RISK SUMMARY

<table>
<thead>
<tr>
<th>Stationary Sources</th>
<th>Cancer Risk – Lifetime</th>
<th>Chronic Hazards</th>
<th>(\text{PM}_{2.5})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buses - Walnut Creek BART Station</td>
<td>8.5E-06</td>
<td>0.006</td>
<td>0.03 (\mu \text{g/m}^3)</td>
</tr>
<tr>
<td>Generator – Walnut Creek BART Station</td>
<td>3.5E-06</td>
<td>0.011</td>
<td>0.006 (\mu \text{g/m}^3)</td>
</tr>
<tr>
<td>Generator – SRS Development</td>
<td>2.6E-06</td>
<td>0.001</td>
<td>0.008 (\mu \text{g/m}^3)</td>
</tr>
<tr>
<td>Generator – Legacy Partners III</td>
<td>1.6E-06</td>
<td>0.007</td>
<td><0.001 (\mu \text{g/m}^3)</td>
</tr>
<tr>
<td>Generator – Target</td>
<td>1.0E-08</td>
<td><0.001</td>
<td>0.001 (\mu \text{g/m}^3)</td>
</tr>
<tr>
<td>Gasoline Station – USA Gas #863</td>
<td>2.1E-06</td>
<td>0.006</td>
<td><0.001 (\mu \text{g/m}^3)</td>
</tr>
<tr>
<td>Generator – Growers Square</td>
<td>2.8E-06</td>
<td>0.02</td>
<td><0.001 (\mu \text{g/m}^3)</td>
</tr>
<tr>
<td>Generator – Pacific Bell</td>
<td>6.6E-06</td>
<td>0.033</td>
<td>0.002 (\mu \text{g/m}^3)</td>
</tr>
<tr>
<td>Generator – Mercer Owners Association</td>
<td>5.7E-06</td>
<td>0.022</td>
<td>0.001 (\mu \text{g/m}^3)</td>
</tr>
</tbody>
</table>

36 Illingworth & Rodkin, 2012. *Air Quality and Health Risk Assessment for City of Walnut Creek BART Transit Village DEIR.*
TABLE 4.4-9 PROJECT ON-SITE RISK SUMMARY

<table>
<thead>
<tr>
<th>Stationary Sources</th>
<th>Cancer Risk – Lifetime *</th>
<th>Chronic Hazards</th>
<th>PM$_{2.5}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobile Sources</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-680</td>
<td>7.9E-06</td>
<td>0.01</td>
<td>0.08 µg/m³</td>
</tr>
<tr>
<td>Northbound I-680 Off-ramp to Ygnacio Valley Road</td>
<td>4.8E-06</td>
<td>0.008</td>
<td>0.015 µg/m³</td>
</tr>
<tr>
<td>Southbound I-680 On-ramp from Ygnacio Valley Road</td>
<td>2.2E-06</td>
<td>0.006</td>
<td><0.001 µg/m³</td>
</tr>
<tr>
<td>State Route 24 Westbound On-ramp from I-680 Southbound</td>
<td>2.4E-06</td>
<td>0.007</td>
<td>0.002 µg/m³</td>
</tr>
<tr>
<td>Ygnacio Valley Road</td>
<td>8.5E-06</td>
<td>0.01</td>
<td>0.041 µg/m³</td>
</tr>
<tr>
<td>California Boulevard</td>
<td>3.0E-06</td>
<td>0.007</td>
<td>0.005 µg/m³</td>
</tr>
<tr>
<td>Main Street</td>
<td>2.1E-06</td>
<td>0.006</td>
<td><0.001 µg/m³</td>
</tr>
<tr>
<td>Project-Level Threshold</td>
<td>10E-06</td>
<td>1.0</td>
<td>0.3 µg/m³</td>
</tr>
<tr>
<td>Exceeds Threshold</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

a. Lifetime cancer risk reported in excess cases per million, applying an age-sensitivity weighting factor to reflect the greater sensitivity of infants and small children to cancer causing TACs.

AIR-4c

The Project would not expose sensitive receptors to substantial pollutant concentrations from CO hotspots.

CO Hotspots

The proposed Project would generate a net increase of 807 average daily trips and 2,420 daily VMT. The proposed Project would not conflict with the C/CAG’s CMP because it would not hinder the capital improvements outlined in the CMP or alter regional travel patterns. C/CAG’s CMP must be consistent with MTC’s/ABAG’s Plan Bay Area. An overarching goal of the regional plan is to concentrate development in areas where there are existing services and infrastructure rather than allocate new growth in outlying areas where substantial transportation investments would be necessary to achieve the per capita passenger vehicle VMT and

37 Fehr & Peers. 2013, *The Landing at Walnut Creek Transportation Impact Analysis.*
associated GHG emissions reductions. The Project proposes construction of residential units and would be consistent with the overall goals of the MTC/ABAG's Plan Bay Area. Furthermore, the proposed Project would not increase traffic volumes at affected intersections by more than 44,000 vehicles per hour or 24,000 vehicles per hour where vertical and/or horizontal mixing is substantially limited. Trips associated with the proposed Project would not exceed the screening criteria of the BAAQMD, therefore impacts associated CO hotspots would be less than significant.

Existing federal, State, and local regulations and policies described throughout this chapter protect local and regional air quality. Continued compliance with these regulations would reduce impacts.

Significance Without Mitigation: Less than significant.

4.4.4 CUMULATIVE IMPACTS

\[\text{AIR-5} \]
The Project, in combination with past, present, and reasonably foreseeable projects, could cumulatively contribute to air quality impacts in the San Francisco Bay Area Air Basin.

This section analyzes potential impacts related to air quality that could occur from a combination of the proposed Project with other past, present, and reasonably foreseeable projects within the Air Basin. Any project that produces a significant project-level regional air quality impact in an area that is in nonattainment adds to the cumulative impact. The SFBAAB is currently designated a nonattainment area for California and National O₃, California and National PM₂.₅, and California PM₁₀ AAQS. Due to the extent of the area potentially impacted from cumulative project emissions (the air basin), a project is cumulatively significant when project-related emissions exceed the BAAQMD emissions thresholds shown in Table 4.4-5.

Cumulative Construction and Operational Criteria Air Pollutant Emissions

As described above, the proposed Project would have no impact or less than significant impacts, including for regional construction and operational emissions (including AQMP consistency), CO hotspots, and odor impacts. Therefore, the proposed Project's operational and construction contribution to regional cumulative air quality impacts would be less than significant.

Cumulative Community Risk and Hazards

BAAQMD has adopted separate cumulative thresholds for community risk and hazards. Cumulative impacts are described in more detail below.

Cumulative Off-Site Construction Community Risk and Hazards

Adjacent sensitive land uses could be potentially impacted by construction activities and cumulative emissions of TACs. Criteria pollutants from multiple construction projects would further degrade regional and local air quality. As previously noted, air quality would be temporarily impacted during project-related construction activities. Project-related construction emissions would exceed the BAAQMD's project-level significance thresholds for cancer risk and PM$_{2.5}$ (see Table 4.4-8). As the SFBAAB is currently designated a nonattainment area for California PM$_{10}$ and PM$_{2.5}$ AAQS, significant project-related construction emissions would add to the cumulative impact. Therefore, the Project's contribution to cumulative air quality impacts during construction activities would be significant.

Cumulative On-Site Community Risk and Hazards

This section analyzes potential impacts related to air quality that could occur from a combination of the proposed project with other past, present, and reasonably foreseeable projects within the San Francisco Bay Area Air Basin (SFBAAB). Any project that produces a significant project-level regional air quality impact in an area that is in nonattainment adds to the cumulative impact. With respect to community risks and hazards, a project would have a cumulative considerable impact if the aggregate of all past, present, and foreseeable future sources within a 1,000-foot radius from the fence line of a source, or from the location of a receptor, plus the contribution from the project exceeds the BAAQMD thresholds shown in Table 4.4-10.

Results of the BAAQMD screening analysis, as shown in Table 4.4-10, indicate that the cumulative cancer risk for a resident of the Project site attributed to all stationary, area, and mobile sources within 1,000 feet of the Project, based on maximum ground-level concentrations for a 70-year, 24-hour outdoor exposure duration, is 64 x 10^-6 (roughly 64 per million), which is less than the significance threshold of 100 per million for cumulative sources. For noncarcinogenic effects, the hazard index identified for each toxicological endpoint totaled less than ten. Therefore, chronic noncarcinogenic hazards are within acceptable limits. In addition, PM$_{2.5}$ average annual concentrations are below the BAAQMD cumulative significance thresholds. Therefore, the Project's on-site cumulative air quality impacts due to stationary and mobile sources with respect to cumulative on-site risk and hazards would be less than significant.

Table 4.4-10 Cumulative On-Site Risk Summary

<table>
<thead>
<tr>
<th>Period</th>
<th>Cancer Risk – Lifetime</th>
<th>Chronic Hazards</th>
<th>PM$_{2.5}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buses - Walnut Creek BART Station</td>
<td>8.5E-06</td>
<td>0.006</td>
<td>0.03 µg/m3</td>
</tr>
<tr>
<td>Generator – Walnut Creek BART Station</td>
<td>3.5E-06</td>
<td>0.011</td>
<td>0.006 µg/m3</td>
</tr>
<tr>
<td>Generator – SRS Development</td>
<td>2.6E-06</td>
<td>0.001</td>
<td>0.008 µg/m3</td>
</tr>
</tbody>
</table>
Cumulative On-Site Risk Summary

<table>
<thead>
<tr>
<th>Period</th>
<th>Cancer Risk – Lifetime (^{a})</th>
<th>Chronic Hazards</th>
<th>PM(_{2.5})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generator – Legacy Partners III</td>
<td>1.6E-06</td>
<td>0.007</td>
<td><0.001 µg/m(^3)</td>
</tr>
<tr>
<td>Generator – Target</td>
<td>1.0E-08</td>
<td><0.001</td>
<td>0.001 µg/m(^3)</td>
</tr>
<tr>
<td>Gasoline Station – USA Gas #863</td>
<td>2.1E-06</td>
<td>0.006</td>
<td><0.001 µg/m(^3)</td>
</tr>
<tr>
<td>Generator – Growers Square</td>
<td>2.8E-06</td>
<td>0.02</td>
<td><0.001 µg/m(^3)</td>
</tr>
<tr>
<td>Generator – Pacific Bell</td>
<td>6.6E-06</td>
<td>0.033</td>
<td>0.002 µg/m(^3)</td>
</tr>
<tr>
<td>Generator – Mercer Owners Association</td>
<td>5.7E-06</td>
<td>0.022</td>
<td>0.001 µg/m(^3)</td>
</tr>
</tbody>
</table>

Mobile Sources

<table>
<thead>
<tr>
<th>Source</th>
<th>Cancer Risk – Lifetime (^{a})</th>
<th>Chronic Hazards</th>
<th>PM(_{2.5})</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-680</td>
<td>7.9E-06</td>
<td>0.01</td>
<td>0.08 µg/m(^3)</td>
</tr>
<tr>
<td>Northbound I-680 Off-ramp to Ygnacio Valley Road</td>
<td>4.8E-06</td>
<td>0.008</td>
<td>0.015 µg/m(^3)</td>
</tr>
<tr>
<td>Southbound I-680 On-ramp from Ygnacio Valley Road</td>
<td>2.2E-06</td>
<td>0.006</td>
<td><0.001 µg/m(^3)</td>
</tr>
<tr>
<td>State Route 24 Westbound On-ramp from I-680 Southbound</td>
<td>2.4E-06</td>
<td>0.007</td>
<td>0.002 µg/m(^3)</td>
</tr>
<tr>
<td>Ygnacio Valley Road</td>
<td>8.5E-06</td>
<td>0.01</td>
<td>0.041 µg/m(^3)</td>
</tr>
<tr>
<td>California Boulevard</td>
<td>3.0E-06</td>
<td>0.007</td>
<td>0.005 µg/m(^3)</td>
</tr>
<tr>
<td>Main Street</td>
<td>2.1E-06</td>
<td>0.006</td>
<td><0.001 µg/m(^3)</td>
</tr>
<tr>
<td>Total Risk</td>
<td>64E-06</td>
<td>0.16</td>
<td>0.19 µg/m(^3)</td>
</tr>
<tr>
<td>Threshold</td>
<td>100E-06</td>
<td>10</td>
<td>0.8 µg/m(^3)</td>
</tr>
</tbody>
</table>

| Exceeds Threshold | No | No | No |

\(^{a}\) Lifetime cancer risk reported in excess cases per million, applying an age-sensitivity weighting factor to reflect the greater sensitivity of infants and small children to cancer causing TACs.

Existing federal, State, and local regulations and policies described throughout this chapter protect local and regional air quality. While continued compliance with these regulations would reduce impacts, construction emissions could exceed the cancer risk and PM$_{2.5}$ thresholds and could cumulatively contribute to air quality impacts in the San Francisco Bay Area Air Basin.

Significance Without Mitigation: Significant.

4.4.5 SUMMARY OF SIGNIFICANT IMPACTS AND MITIGATION MEASURES

<table>
<thead>
<tr>
<th>AIR-2a</th>
<th>During construction, the Project could violate any air quality standard or contribute substantially to an existing or projected air quality violation.</th>
</tr>
</thead>
</table>

If uncontrolled, Fugitive Dust (PM$_{10}$ and PM$_{2.5}$) levels downwind of actively disturbed areas during construction could violate any air quality standard or contribute substantially to an existing or projected air quality violation.

Mitigation Measure AIR-2a: The Project’s construction contractor shall comply with the following BAAQMD Best Management Practices for reducing construction emissions of PM$_{10}$ and PM$_{2.5}$:

- Water all active construction areas at least twice daily, or as often as needed to control dust emissions. Watering should be sufficient to prevent airborne dust from leaving the site. Increased watering frequency may be necessary whenever wind speeds exceed 15 miles per hour. Reclaimed water should be used whenever possible.
- Pave, apply water twice daily or as often as necessary, to control dust, or apply (non-toxic) soil stabilizers on all unpaved access roads, parking areas, and staging areas at construction sites.
- Cover all trucks hauling soil, sand, and other loose materials or require all trucks to maintain at least two feet of freeboard (i.e., the minimum required space between the top of the load and the top of the trailer).
- Sweep daily (with water sweepers using reclaimed water if possible), or as often as needed, all paved access roads, parking areas and staging areas at the construction site to control dust.
- Sweep public streets daily (with water sweepers using reclaimed water if possible) in the vicinity of the Project site, or as often as needed, to keep streets free of visible soil material.
- Hydroseed or apply non-toxic soil stabilizers to inactive construction areas.
- Enclose, cover, water twice daily, or apply non-toxic soil binders to exposed stockpiles (dirt, sand, etc.).
- Limit vehicle traffic speeds on unpaved roads to 15 mph.
- Replant vegetation in disturbed areas as quickly as possible.
- Install sandbags or other erosion control measures to prevent silt runoff from public roadways.
Significance With Mitigation: Less than significant. Adherence to the BAAQMD’s BMPs for reducing construction emissions of PM$_{10}$ and PM$_{2.5}$ would ensure that ground-disturbing activities would not generate a significant amount of fugitive dust.

AIR-4a The Project would expose off-site sensitive receptors to substantial pollutant concentrations from construction activities.

On-site construction emissions would generate a substantial increase in pollutant concentrations at nearby sensitive receptors.

Mitigation Measure AIR-4a: The applicant shall adhere to one of the following:

(a) The construction contractor shall use Level 3 Diesel Particulate Filters (DPFs) for construction equipment over 75 horsepower. These types of filters are capable of reducing particulate matter emissions by 85 percent. – or –

(b) Alternatively, the City shall allow the Applicant to prepare a revised Construction Health Risk Assessment (HRA). If the revised Construction HRA can demonstrate that construction toxic air contaminants (TAC) and fine particulate matter (PM$_{2.5}$) emissions can be mitigated under the Bay Area Air Quality Management District’s (BAAQMD) threshold of 10 in a million for a lifetime cancer risk using only Level 2 DPFs, which are capable of reducing particulate matter emissions by 50 percent, or a combination of Level 2 and Level 3 DPFs, then the construction contractor shall use the required mix of Level 2 and Level 3 DPF specified in the revised Construction HRA for construction equipment over 75 horsepower. The revised HRA shall be approved by the City during the compliance review process, prior to construction.

Under either scenario above, a list of construction equipment by type and model year shall be maintained by the construction contractor on-site. The construction contractor shall ensure that all construction equipment is properly serviced and maintained to the manufacturer’s standards to reduce operational emissions, and shall limit nonessential idling of construction equipment to no more than five consecutive minutes.

Significance With Mitigation: Less than significant. Adherence to Mitigation Measure AQ-4a would reduce particulate matter emissions by approximately 85 percent. The mitigated health risk values with use of Level 3 DPFs were calculated and are summarized in Table 4.4-11. For these calculations, it was assumed that an adult would spend 73 percent of the time at home and a child would spend 75 percent of the time at home, as per OEHHA guidance. However, if the adults and children spent 100 percent of their time at home, the calculated risk levels would still be below threshold values. The results indicate that with mitigation, the excess cancer risk for the adult and child exposure scenarios would be less than the threshold values. Additionally, the PM$_{2.5}$ annual concentrations would be below the significance threshold with mitigation. Consequently, the Project would not expose sensitive receptors to substantial concentrations of air pollutant emissions during construction and impacts would be less than significant with mitigation.
TABLE 4.4-11 MITIGATED CONSTRUCTION RISK SUMMARY

<table>
<thead>
<tr>
<th>Period</th>
<th>Cancer Risk – Adult</th>
<th>Cancer Risk – Child</th>
<th>Chronic Hazards</th>
<th>PM$_{2.5}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Landing Construction Summary (2015-2016)</td>
<td>8.8E-07</td>
<td>4.9E-06</td>
<td>0.034</td>
<td>0.16 µg/m3</td>
</tr>
<tr>
<td>Project-Level Threshold</td>
<td>10E-06</td>
<td>10E-06</td>
<td>1.0</td>
<td>0.3 µg/m3</td>
</tr>
<tr>
<td>Exceeds Threshold</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Source: BREEZE, Version 7.7.3, 2013. Mitigated scenario includes retrofitting of all off-road equipment greater than 75 HP with Level 3 diesel particulate filters.

AIR-5

The Project, in combination with past, present, and reasonably foreseeable projects, could cumulatively expose off-site sensitive receptors to substantial pollutant concentrations from construction activities.

Mitigation Measure AIR-5: Implementation of Mitigation Measure AIR-4a listed above would reduce the Project’s cumulative contribution to particulate matter emissions by approximately 85 percent with Level 3 DPFs and the excess cancer risk for the adult and child exposure scenarios would be less than the threshold values. Additionally, the PM$_{2.5}$ annual concentrations would be below the significance threshold with implementation of this mitigation measure. Consequently, the Project’s contribution to cumulative air quality impacts during construction activities would be less than significant with mitigation.

Significance With Mitigation: Less than significant.
4.5 BIOLOGICAL RESOURCES

This chapter describes existing biological resources in the Project area and evaluates the potential biological resources impacts associated with future development that could occur by adopting and implementing the proposed Project. A summary of the relevant regulatory setting and existing conditions is followed by a discussion of the proposed Project-specific and cumulative impacts.

Biological resources associated with the Project site were identified through a review of available background information and a field reconnaissance survey. Available documentation was reviewed to provide information on general resources in the Walnut Creek area, presence of sensitive natural communities, and the distribution and habitat requirements of special-status species which have been recorded from or are suspected to occur in the Project vicinity. This includes a Tree Inventory and Assessment\(^1\) and Addendum\(^2\) by the applicant’s arborist providing information on all regulated trees on the site (see Appendix D of this Draft EIR). A field reconnaissance survey was conducted by the EIR biologist on October 8, 2013 to confirm information on trees and to determine the existing vegetation and wildlife resources, presence or absence of any sensitive resources, and the suitability of the site to support occurrences of special-status species.

4.5.1 ENVIRONMENTAL SETTING

4.5.1.1 REGULATORY FRAMEWORK

This section summarizes key federal, State, regional, and City regulations and policies pertaining to biological resources that are applicable to the proposed Project.

Federal Regulations

The federal laws that regulate the treatment of biological resources include the Endangered Species Act, the Migratory Bird Treaty Act, and the Clean Water Act. The following sections outline the relevant principles of each.

Federal Endangered Species Act

The United States Fish and Wildlife Service (USFWS) and the National Oceanic and Atmospheric Administration, National Marine Fisheries Service (NOAA Fisheries) are responsible for implementation of the federal Endangered Species Act (ESA). The Act protects fish and wildlife species that are listed as threatened or endangered and their habitats. Endangered species, subspecies, or distinct population segments are those that are

\(^1\) Traverso Tree Service, 2012, *Tree Inventory & Assessment for “The Landing at Walnut Creek,”* prepared for Center Street Development, November 28.

\(^2\) Traverso Tree Service, 2013, *Addendum to Tree Inventory & Assessment for “The Landing at Walnut Creek,”* prepared for Center Street Development, May 22.
in danger of extinction through all or a significant portion of their range. Threatened species, subspecies, or distinct population segments are those that are likely to become endangered in the near future.

Clean Water Act

The federal Clean Water Act (CWA) is administered by the United States Environmental Protection Agency (USEPA) and the United States Army Corps of Engineers (USACE). The USACE is responsible for regulating the discharge of fill material into waters of the United States, including lakes, rivers, streams, and their tributaries, as well as wetlands. In 2008, USACE published the *Wetlands Regulatory Assistance Program: Regional Supplements to the Corps of Engineers Wetland Delineation Manual: Arid West Region (Version 2.0)*, which provides detailed information for the Arid West Region. Wetlands are defined for regulatory purposes as areas “inundated or saturated by surface or ground water at a frequency and duration sufficient to support, and that under normal circumstances support, a prevalence of vegetation typically adapted for life in saturated soil conditions.”

The discharge of dredged or fill material into waters of the United States is subject to permitting under Section 404 (Discharges of Dredge or Fill Material) of the CWA. Section 401 (Certification) specifies additional requirements for permit review, particularly at the State level. Project proponents must obtain a permit from USACE for all discharges of dredged or fill material into waters of the United States, including wetlands, before proceeding with a proposed action. The USACE permits must be certified by the State Water Resources Control Board (SWRCB) in order to be valid. Thus, certification from the SWRCB should be requested at the same time an application is filed with USACE.

Certification from the California Regional Water Quality Control Board (RWQCB) is also required when a proposed activity may result in discharge into navigable waters, pursuant to Section 401 of the CWA and EPA 404(b)(1) Guidelines.

National Pollutant Discharge Elimination System Program

The 1972 amendments to the federal Water Pollution Control Act established the National Pollutant Discharge Elimination System (NPDES) permit program to control discharges of pollutants from point sources (Section 402). The NPDES Permit Program is the primary federal program that regulates point source and nonpoint-source discharges to waters of the United States. The SWRCB issues both general and individual NPDES permits for certain activities.

Migratory Bird Treaty Act

The USFWS is also responsible for implementing the Migratory Bird Treaty Act (MBTA). The MBTA implements a series of treaties between the United States, Mexico, and Canada that provide for the international protection of migratory birds. Wording in the MBTA makes it clear that most actions that result in “taking” or possession (permanent or temporary) of a protected species can be a violation of the Act. The word “take” is defined as meaning “pursue, hunt, shoot, wound, kill, trap, capture, or collect, or attempt to pursue, hunt, shoot, wound, kill, trap, capture, or collect.” The provisions of the MBTA are nearly absolute; “except as permitted by regulations” is the only exception. Examples of permitted actions that do not violate the law are the possession of a hunting
license to pursue specific game birds, legitimate research activities, display in zoological gardens, bird-banding, and similar activities.

State Regulations

State laws regulating biological resources include the California Endangered Species Act, the California Fish and Game Code, and the California Native Plant Protection Act, each of which is described below.

California Endangered Species Act

The California Endangered Species Act (CESA) establishes State policy to conserve, protect, restore, and enhance threatened or endangered species and their habitats. The CESA mandates that State agencies should not approve projects that jeopardize the continued existence of threatened or endangered species if reasonable and prudent alternatives are available that would avoid jeopardy. For projects that would affect species that are on the federal and State lists, compliance with the federal ESA satisfies the CESA if the California Department of Fish and Wildlife (CDFW) determines that the federal incidental take authorization is consistent with CESA under California Fish and Game Code Section 2080.1. For projects that would result in take of species that are only State-listed, the project proponent must apply for a take permit under Section 2081(b) of the California Fish and Game Code.

California Fish and Game Code

Under the California Fish and Game Code, the CDFW provides protection from “take” for a variety of species, including Fully Protected species. “Fully Protected” is a legal protective designation administered by the CDFW, intended to conserve wildlife species that are at risk or extinction, within California. Lists have been created for birds, mammals, fish, amphibians, and reptiles. The California Fish and Game Code sections dealing with Fully Protected species state that these animals “...may not be taken or possessed at any time and no provision of this code or any other law shall be construed to authorize the issuance of permits or licenses to take any fully protected” species. However, taking may be authorized for necessary scientific research. In 2003, the code sections dealing with fully protected species were amended to allow CDFW to authorize taking resulting from recovery activities for state-listed species.

The CDFW also protects streams, water bodies, and riparian corridors through the streambed alteration agreement process under Section 1601 to 1606 of the California Fish and Game Code. The Fish and Game Code stipulates that it is “unlawful to substantially divert or obstruct the natural flow or substantially change the bed, channel or bank of any river, stream or lake” without notifying CDFW, incorporating necessary mitigation, and obtaining a streambed alteration agreement. Through policy, CDFW asserts jurisdiction to the top of the banks of all streams, including intermittent and ephemeral streams, extending laterally to the upland edge of adjacent riparian vegetation. The CDFW uses the Cowardin system for wetland identification and classification, which typically results in a larger jurisdictional area than federal jurisdiction under the CWA. Under this system, wetlands must have one or more of the following three attributes: (1) at least periodically, the land supports predominantly hydrophytes; (2) the substrate is predominantly undrained hydric soil; and (3) the substrate is non-soil and is saturated with water or covered by shallow water at some time during the growing season of each year.
California Native Plant Protection Act

The California Native Plant Protection Act of 1977 (CNPPA) prohibits importation of rare and endangered plants into California, “take” of rare and endangered plants, and sale of rare and endangered plants. CESA defers to the CNPPA, which ensures that State-listed plant species are protected when State agencies are involved in projects subject to CEQA. In this case, plants listed as rare under the CNPPA are not protected under CESA; however, impacts to endangered, rare, or threatened species, including plants, are evaluated under CEQA.

4.5.1.2 LOCAL REGULATIONS

Walnut Creek General Plan 2025

General Plan 2025 establishes a comprehensive and long-term strategy for development of Walnut Creek while preserving open space and the natural character of the city. The goals and policies outlined in Chapter 3, Natural Environment and Public Spaces of General Plan 2025 are related to the maintenance and enhancement of open space lands and waterways, and the acquisition of open space lands or conservation easements and do not directly apply to the type of infill development proposed by the Project.

Walnut Creek Municipal Code

The City of Walnut Creek Municipal Code contains all ordinances for the city. The Municipal Code is organized by Title, Chapter and Section. The current Municipal Code is up to date through Ordinance 2118, which was passed on October 1, 2013.3

Preservation of Trees on Private Property

Chapter 8 of Title 3 of the Walnut Creek Municipal Code, known as the Tree Preservation Ordinance, requires a tree removal permit for removal of certain trees. Trees protected under this ordinance are defined in Sections 3-8.02(h) and (j), as the following:

- Any live woody plant having a single perennial stem of 28 inches or more in circumference measured 4.5 feet above the natural grade;
- Any multi-stemmed perennial plant having an aggregate circumference of 40 inches or more measured 4.5 feet above the natural grade;
- Any multi-stemmed plant having one stem of 28 inches or more in circumference.

The tree removal permit procedure is outlined in Section 3-8.04. To obtain a tree removal permit, an applicant seeking to cut down, destroy, or remove one or more trees within the city shall file an application for a permit no less than ten days prior to the time desired for the physical removal of the tree. For applications or projects that include development, the applicant shall review the proposed development with the City's Community

Development Director (Director) to determine which trees should be preserved prior to design drawings upon which time the applicant can concurrently apply for a tree removal permit.

Contents of the application shall contain information such as: the number, species, size, and location of the tree or trees to be disturbed; a brief statement of the reason for removal; this signature of the property owner authorizing removal; signature of the person performing the work (i.e. removal of trees); and any other information required by the Director. An arborist report would also need to be provided, including a tree survey plan specifying the precise location of existing and proposed buildings and grades to these trees along with underground utility services, sub-drains, water, sewer, irrigation, and lighting. The arborist report shall include a table which identifies each tree by number, along with its size, species, and whether or not it is proposed for removal or preservation.

Upon application submittal, a preliminary review will be conducted and for development involving removal of three or more trees, a tree appraisal which shall include an evaluation of the trees to be removed and recommendations concerning the removal and preservation of trees on the property. Prior to issuance of the permit, the Director shall visit and inspect the property to determine whether or not the trees in the application may be removed or removed.

Any tree not approved by the Director for removal, such as tree removal involving development requiring discretionary development approval, may be considered by the City Council, Planning Commission, or Design Review Commission. Upon approval from a decision-making body, conditions such as planting trees as part of the development over and above the landscaping that would otherwise be required at a value equal to the value of the highly protected tree that will be removed or payment of an in-lieu fee to the City in the amount equal to the value of the removed tree. In lieu fees collected shall be used only for the installation or replacement of trees in City parks or open space or other areas of benefit to the City.

Additionally, removal of any “Highly Protected Tree” also requires a tree removal permit. Highly Protected Trees include the following native tree species that meet the size criteria set forth above: valley oak (Quercus lobata), blue oak (Q. douglasii), coast live oak (Q. agrifolia), California black oak (Q. kelloggii), canyon live oak (Q. chrysolepis), interior live oak (Q. wislizenii var. wislizenii), madrone (Arbutus menziesii), California buckeye (Aesculus californica), California black walnut (Juglans hindsii), and grey pine (Pinus sabiniana).

Street Trees

Removal and planting of street trees is regulated by Article 4 of Chapter 1 of Title 7 of the Walnut Creek Municipal Code. A street tree is defined in Section 7-1.403 as any tree located within 6 feet from the back edge of the sidewalk, if there is no sidewalk, within 11 feet from the curb line. The Code requires a permit for planting any street tree, and allows removal of street trees provided 1:1 replacement is provided. In addition, for projects requiring Design Review, Section 7-1.405 provides that “the Design Review Commission shall review the type, size, and location of street trees for new development as part of the design review plan proposed for the project. Design Review Commission approval shall constitute the planting permit required under Section 7-1.404. Planting or re-planting of street trees must adhere to planting standards in the City’s Master Street Tree Planting Plan.”
4.5.1.3 EXISTING CONDITIONS

Vegetation and Wildlife Habitat

The site is located in a developed area comprised of a combination of older single-family residences, apartment complexes and office-related uses, together with associated roadway and landscape improvements. No natural habitat, sensitive natural communities, or jurisdictional waters or wetlands occur on the site or vicinity. Vegetation in yards and street frontages is dominated by ornamental landscaping and non-native invasive species. Yards support turf and groundcover species, shrubs and trees, most of which are non-native species. Common landscape tree plantings include: coast redwoods (Sequoia sempervirens), Siberian elm (Ulmus pumila), fruitless mulberry (Morus alba), plums (Prunus sp.), blackwood acacia (Acacia melanoxylon), raywood ash (Fraxinus oxycarpa), privet (Ligustrum ovalifolium), London plane (Platanus acerifolia), tree of heaven (Ailanthus altissima), Arizona cypress (Cupressus arizonica), stone pine (Pinus pinea), willow (Salix babylonica), and silver maple (Acer saccharinum), among others.

According to the Arborist Report, a total of 34 trees grow on the site that qualify as regulated trees under the City of Walnut Creek Tree Preservation Ordinance. An additional four trees grow along the Ygnacio Valley Road frontage that are regulated by the City as street trees. All the regulated trees are non-native ornamental species common in suburban areas, including ash trees planted along Ygnacio Valley Road. Most of the regulated trees have been rated in good to fair condition, but the applicant's arborist has concluded that none are “…exceptional specimens that would warrant the measures necessary for their preservation.”

Existing wildlife habitat is typical of suburban areas. Species typical of urbanized and ruderal habitat occur in the vicinity, including birds and mammals common in the suburban habitats. Typical species observed or suspected include: house finch, house sparrow, mourning dove, northern mocking bird, pocket gopher, house mouse, eastern fox squirrel, Norway rat, and western fence lizard. Raccoon, opossum, and other larger species may occasionally forage in yard areas at night, but foraging opportunities are limited. No evidence of nesting by any species was observed in the trees on the site, with the exception of several non-native eastern fox squirrel nests.

Special-Status Species

A record search conducted on the California Natural Diversity Data Base (CNDDB) of the CDFW, together with other relevant information, indicates that occurrences of numerous plant and animal species with special-status have been recorded from or are suspected to occur in central Contra Costa County and the Walnut Creek vicinity. Several of these have been reported by the CNDDB from the Walnut Creek area, and most are associated with the remaining undeveloped lands to the east, northwest, and southwest of the urbanized valley floor. Some historic occurrences, such as those for California tiger salamander on the valley floor, are from collections made over 50 years ago and are no longer believed to be present due to urbanization.

As indicated in Figure 4.5-1, a number of plant species with special status have been reported by the CNDDB in the Walnut Creek vicinity. These have varied status, and many are considered rare (list 1B) by the California Native Plant Society (CNPS). Of these, nine have actually been reported within or at the edge of Walnut Creek. These include: bent-flowered fiddleneck (Amsinckia lunaris), Mt. Diablo manzanita (Arctostaphylos auriculata), Contra Costa manzanita (Arctostaphylos manzanita ssp. laevigata), big tarplant (Blepharizonia plumosa ssp. plumosa), Mt. Diablo fairy-
lantern (*Calochortus pulchellus*), Congdon’s tarplant (*Centromadia parryi ssp. congdonii*), Diablo helianthella (*Helianthella castanea*), Contra Costa goldfields (*Lasthenia conjugens*), and Hall’s bush-mallow (*Monardella villosa ssp. globosa*).

However, existing development and past disturbance precludes the potential for continued occurrence of any populations of special-status plant species on the site. Historic occurrences of big tarplant, Contra Costa goldfield, and bent-flowered fiddleneck which were once known from the valley floor encompassing the site vicinity have been extirpated as a result of urbanization.

A number of bird, mammal, reptile, fish, and invertebrate species with special-status are known or suspected to possibly occur in the Walnut Creek vicinity. These include: Cooper’s hawk (*Accipiter cooperi*), sharp-shinnned hawk (*Accipiter striatus*), golden eagle (*Aquila chrysaetos*), burrowing owl (*Athene cunicularia*), tricolored blackbird (*Agelaius tricolor*), Ferruginous hawk (*Buteo regalis*), northern harrier (*Circus cyaneus*), yellow warbler (*Dendroica petechia*), white-tailed kite (*Elanus leucurus*), merlin (*Falco columbrius*), prairie falcon (*Falco meciannus*), American peregrine falcon (*Falco peregrinus anatum*), California horned lark (*Eremophila alpestris actia*), loggerhead shrike (*Lanius ludociicanus*), California tiger salamander (*Ambystoma californiense*), northwestern pond turtle (*Emmys marmorata*), Alameda whipsnake (*Masticophis lateralis euryxanthus*), California horned lizard (*Phynosoma caronatum frontale*), California red-legged frog (*Rana aurora draytonii*), foothill yellow-legged frog (*Rana boylii*), steelhead (*Oncorhynchus mykiss*), Chinook salmon (*Oncorhynchus tshawytscha*), Bridge’s coast range shoulderband (*Helminthoglypta nickliniana bridgesi*), pallid bat (*Antrozous pallidus*), Townsend’s western big-eared bat (*Corynorhinus townsendii townsendii*), hoary bat (*Lasiurus cinereus*), ringtail (*Bassariscus astutus*), mountain lion (*Felis concolor*), San Francisco dusky-footed woodrat (*Neotoma fuscipes annectens*), western mastiff bat (*Eumops perotis californicus*), hoary bat (*Lasiusinus cinereus*), long-eared myotis (*Myotis evotis*), long-legged myotis (*Myotis volans*), Yuma myotis (*Myotis yumanensis*), and big free-tailed bat (*Nyctinomops macrotis*). Of these, four have actually been reported by the CNDDB within the Walnut Creek area as indicated in Figure 4.5-2, but many non-listed special-status species are not monitored by the CNDDB and occurrence data is therefore not available.

Most of the special-status animal species known or suspected to occur in the Walnut Creek area are bird species which forage in the remaining undeveloped habitats. These include: burrowing owl, Cooper’s hawk, loggerhead shrike, northern harrier, sharp-shinnned hawk, tricolored blackbird, and white-tailed kite.

However, suitable foraging and nesting habitat for the numerous special-status bird species is absent on the site and surrounding residential neighborhood. Historic occurrences of California tiger salamander have been reported by the CNDDB from the valley floor in the 1920s through 1950s, but suitable breeding habitat for this species is no longer present and this species is presumed to be extirpated. California red-legged frog and Alameda whipsnake are known to exist in undeveloped lands at the periphery of existing development, but suitable habitat for these species is absent in the residential neighborhood of the site. And special-status bat species have been known to roost in relatively unused structures, but suitable habitat for these species is absent in the structures on the site based on an inspection conducted by the EIR biologist. Other mammal species known or suspected from the region are not believed to occur on the site because of the absence of suitable habitat and distance from known occupied habitat.
THE LANDING AT WALNUT CREEK APARTMENTS DRAFT EIR
CITY OF WALNUT CREEK

BIOLOGICAL RESOURCES

Figure 4.5-1

CNDDB Occurrence Records

ADep - Antioch Dunes evening-primrose
bff - bent-flowered fiddleneck
bt - big tarplant
Ct - Congdon's tarplant
CCg - Contra Costa goldfields
CCm - Contra Costa manzanita

Dh - Diablo helianthella
ff - fragrant fritillary
Hbm - Hall's bush-mallow
LRn - Lime Ridge navarretia
MDfl - Mt. Diablo fairy-lantern
MDm - Mt. Diablo manzanita
Nbm - Norris' beard moss
NCbw - Northern California black walnut
olv - oval-leaved viburnum
SJs - San Joaquin spearscale
ssm - slender silver moss
slp - slender-leaved pondweed
ww - woodland woollythreads

AW - Alameda whipsnake
Crif - California red-legged frog
Cts - California tiger salamander
bo - burrowing owl
hb - hoary bat
pb - pallid bat
pf - prairie falcon

* Data on Alameda whipsnake is secured because of risk of illegal collection. This species has been detected in all USGS quadrangles in the surrounding area.
4.5.2 STANDARDS OF SIGNIFICANCE

An Initial Study was prepared for the proposed Project (see Appendix A of this Draft EIR). Based on the analysis contained in the Initial Study it was determined that development of the proposed Project would not result in significant environmental impacts per the following significance criteria and therefore, are not discussed in this chapter.

- Having a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations or by the California Department of Fish and Wildlife or United States Fish and Wildlife Service.
- Having a substantial adverse effect on federally protected wetlands as defined by Section 404 of the Clean Water Act (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means.
- Interfering substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites.
- Conflicting with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan.
- Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance

Based on the Initial Study it was determined that the proposed Project could result in a significant biological resources impact if it would:

1. Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Wildlife or U.S. Fish and Wildlife Service.

4.5.3 IMPACT DISCUSSION

This section analyzes potential Project-specific and cumulative impacts to biological resources.

BIO-1 The Project would have a substantial adverse effect, either directly or through habitat modifications, on species identified as candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Wildlife or United States Fish and Wildlife Service.

The proposed Project could result in the destruction of active bird nests protected under the Migratory Bird Treaty Act if present during vegetation removal and building demolition. Due to the extent of past development and absence of suitable habitat, no special-status species are believed to occur on the site, and no adverse impacts
are anticipated. This includes absence of suitable habitat for California red-legged frog, California tiger salamander, and special-status bat species.

Similarly, no evidence of any nesting was observed in the existing trees to be removed by the proposed Project. However, there is the remote potential that one or more species of bird protected under the Migratory Bird Treaty Act could establish a nest in the future before vegetation removal and building demolition occurs on the site. If active nests are present, vegetation removal and construction-related disturbance during the breeding and rearing season could inadvertently result in the destruction or abandonment of a nest in active use, which could be a violation of the Migratory Bird Treaty Act and California Fish and Game Code. This would be considered a significant impact if any active nests are present and impacted by vegetation removal and demolition.

Significance Without Mitigation: Significant

4.5.4 CUMULATIVE IMPACTS

The proposed Project, in combination with past, present and reasonably foreseeable projects, would result in less than significant cumulative impacts with respect to biological resources.

The potential impacts of proposed development on biological resources tend to be site-specific, and the overall cumulative effect would be dependent on the degree to which significant vegetation and wildlife resources are protected on a particular site. This includes preservation of well-developed native vegetation (e.g., marshlands, native grasslands, oak woodlands, riparian scrub, and woodland, etc.), populations of special-status plant or animal species, and wetland features (including seasonal wetlands and drainages). Further environmental review of specific development proposals in the vicinity of a development site should serve to ensure that important biological resources are identified, protected, and properly managed, and to prevent any significant adverse development-related impacts, including development for the remaining undeveloped lands in the surrounding incorporated and unincorporated lands.

With regard to future development and its relationship to surrounding habitat, most of the site vicinity is already extensively disturbed by urban and suburban uses. No sensitive resources would be affected by the proposed Project, and trees would be replaced in compliance with the City’s Tree Protection Ordinance, same as the proposed Project. Wildlife in the area has already become acclimated to human activity, and proposed development is not expected to disrupt important movement corridors or access to surrounding habitat. Therefore, the Project would result in a less-than-significant cumulative impact to biological resources, assuming the mitigation measure recommended below is fully implemented to address significant Project-specific impact.

Significance Without Mitigation: Less than significant.
4.5.5 SUMMARY OF SIGNIFICANT IMPACTS AND MITIGATION MEASURES

BIO-1 The Project would have a substantial adverse effect, either directly or through habitat modifications, on species identified as candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Wildlife or United States Fish and Wildlife Service.

Proposed vegetation removal and grading associated with development of the site could result in the direct loss of or temporary construction disturbance to nesting raptors and other migratory birds.

Mitigation Measure BIO-1: Adequate measures should be taken to avoid any inadvertent taking of raptor nests and other nesting birds protected under the Migratory Bird Treaty Act when in active use. This should be accomplished by taking the following steps.

- If vegetation removal and initial construction is proposed during the nesting season (February to August), a focused survey for nesting raptors and other migratory birds should be conducted by a qualified biologist within 14 days prior to the onset of vegetation removal or construction, in order to identify any active nests on the proposed Project site and in the vicinity of proposed construction.

- If no active nests are identified during the construction survey period, or if development is initiated during the non-breeding season (September to February), vegetation removal and construction may proceed with no restrictions.

- If protected bird nests are found, an adequate setback should be established around the nest location and vegetation removal and construction activities restricted within this no-disturbance zone until the qualified biologist has confirmed that any young birds have fledged and are able to function outside the nest location. Required setback distances for the no-disturbance zone should be based on input received from the California Department of Fish and Wildlife (CDFW), and may vary depending on species and sensitivity to disturbance. As necessary, the no-disturbance zone should be fenced with temporary orange construction fencing if construction is to be initiated on the remainder of the development site.

- A report of findings should be prepared by a qualified biologist and submitted to the City of Walnut Creek Planning Division for review and approval prior to initiation of construction within the no-disturbance zone during the nesting season (February to August). The report should either confirm absence of any active nests or should confirm that any young have fledged or are located within a designated no-disturbance zone and construction can proceed.

Significance With Mitigation: Less than significant.
4.6 CULTURAL RESOURCES

This chapter describes the regulatory framework and existing conditions on the Project site related to cultural resources, and the potential impacts of the project on cultural resources. The information and analysis in this chapter is primarily based on the following document, which is included in Appendix E, Cultural Resources Data, of this Draft EIR:

- A Cultural Resources Survey for The Landing at Walnut Creek, prepared by Tom Origer & Associates, October 23, 2013.

4.6.1 ENVIRONMENTAL SETTING

4.6.1.1 REGULATORY FRAMEWORK

This section describes the policies and regulations that apply to cultural resources in Walnut Creek.

Federal Regulations

National Historic Preservation Act

The National Historic Preservation Act of 1966 established the National Register of Historic Places (National Register) as the official designation of historical resources, including districts, sites, buildings, structures and objects. For a property to be eligible for listing in the National Register, it must be significant in American history, architecture, archaeology, engineering or culture, and must retain integrity in terms of location, design, setting, materials, workmanship, feeling and association. Resources less than 50 years in age, unless of exceptional importance, are not eligible for the National Register. Though a listing in the National Register does not prohibit demolition or alteration of a property, CEQA requires the evaluation of project effects on properties that are listed in the National Register.

State Regulations

California Environmental Quality Act

Section 15064.5 of the CEQA Guidelines states that a project that may cause a substantial adverse change in the significance of a historical resource is a project that may have a significant impact on the environment. The CEQA Guidelines define four ways that a property can qualify as a significant historical resource for purposes of CEQA compliance:

- The resource is listed in or determined eligible for listing in the California Register of Historical Resources, as determined by the State Historical Resources Commission.
The resource is included in a local register of historical resources, as defined in Section 5020.1(k) of the Public Resources Code, or identified as significant in a historical resource survey meeting the requirements of Section 5024.1(g) of the Public Resources Code, unless the preponderance of evidence demonstrates that it is not historically or culturally significant.

The lead agency determines the resource to be significant in the architectural, engineering, scientific, economic, agricultural, educational, social, political, military, or cultural annals of California, as supported by substantial evidence in light of the whole record.

The lead agency determines that the resource may be a historical resource as defined in Public Resources Code Sections 5020.1(j) or 5024.1 (CEQA Guidelines Section 15064.5) which means, in part, that it may be eligible for the California Register.

In addition, Public Resources Code Section 21083.2 and Section 15126.4 of the CEQA Guidelines specify lead agency responsibilities to determine whether a project may have a significant effect on archaeological resources. If it can be demonstrated that a project would damage a unique archaeological resource, the lead agency may require reasonable efforts for the resources to be preserved in place or left in an undisturbed state. Preservation in place is the preferred approach to mitigation. The Public Resources Code also details required mitigation if unique archaeological resources are not preserved in place.

Section 15064.5 of the CEQA Guidelines specifies procedures to be used in the event of an unexpected discovery of Native American human remains on non-federal land. These codes protect such remains from disturbance, vandalism, and inadvertent destruction, establish procedures to be implemented if Native American skeletal remains are discovered during construction of a project, and establish the Native American Heritage Commission (NAHC) as the authority to identify the most likely descendant and mediate any disputes regarding disposition of such remains.

California Register of Historic Resources

The California Register of Historic Resources (California Register) establishes a list of properties to be protected from substantial adverse change (Public Resources Code Section 5024.1). The State Office of Historic Preservation (OHP) has determined that buildings, structures and objects 45 years or older may be of historical value. A historical resource may be listed in the California Register if it meets any of the following criteria.

- It is associated with events that have made a significant contribution to the broad patterns of California's history and cultural heritage.
- It is associated with the lives of persons important in California's past.
- It embodies the distinctive characteristics of a type, period, region, or method of construction, or represents the work of an important creative individual, or possesses high artistic value.
- It has yielded or is likely to yield information important in prehistory or history.

The California Register includes properties that are listed or have been formally determined eligible for listing in the National Register, State Historical Landmarks and eligible Points of Historical Interest. Other resources that
may be eligible for the California Register, and which require nomination and approval for listing by the State Historic Resources Commission, include resources contributing to the significance of a local historic district, individual historical resources, historical resources identified in historic surveys conducted in accordance with OHP procedures, historic resources or districts designated under a local ordinance consistent with the procedures of the State Historic Resources Commission, and local landmarks or historic properties designated under local ordinance.

California Historical Building Code

The California Historical Building Code (CHBC), defined in Sections 18950 to 18961 of Division 13, Part 2.7 of Health and Safety Code, provides regulations and standards for the rehabilitation, preservation, restoration (including related reconstruction) or relocation of historical buildings, structures and properties deemed by any level of government as having importance to the history, architecture, or culture of an area. The City of Walnut Creek has adopted the 2010 CHBC as part of its Municipal Code.

Local Regulations

Walnut Creek General Plan 2025

The Built Environment chapter of General Plan 2025 contains the following goals and policies related to the protection of cultural resources (Table 4.6-1). These policies require records searches for development projects recognizing the potential for discovery of archaeological resources, and call for preservation, restoration, and compatible reuse of historically significant structures and sites.

| TABLE 4.6-1 GOALS AND POLICIES OF THE WALNUT CREEK GENERAL PLAN 2025 |
|-------------------|--|
| Chapter 4 Built Environment |
Goal/Policy/Action Number	Goal/Policy/Action Text
Goal 16	Maintain and enhance Walnut Creek’s identity and sense of place.
Policy 16.1	Foster the preservation, restoration, and compatible reuse of architecturally significant structures and sites.
Goal 24	Protect and conserve archaeological and paleontological resources.
Policy 24.1	Review the potential for the presence of archaeological and paleontological resources and remains in or near identified archaeological sites.
Goal 25	Maintain and enhance Walnut Creek’s historic resources.
Policy 25.1	Foster the preservation, restoration, and compatible reuse of historically significant structures and sites.

Source: Walnut Creek General Plan 2025.
4.6.1.2 EXISTING CONDITIONS

This section provides an overview of the history of Walnut Creek and resources of historical significance that may be affected by the proposed Project.

Paleontological Resources

Paleontological resources (fossils) are the remains and/or traces of prehistoric plant and animal life exclusive of human remains or artifacts. Fossil remains such as bones, teeth, shells, and wood are found in the geologic deposits (rock formations) in which they were originally buried. Paleontological resources represent a limited, non-renewable, sensitive scientific and educational resource.

The potential for fossil remains at a location can be predicted through previous correlations that have been established between the fossil occurrence and the geologic formations within which they are buried. For this reason, knowledge of the geology of a particular area and the paleontological resource sensitivity of particular rock formations, make it possible to predict where fossils will or will not be encountered. Based on the result of pre-field research, it is possible that cultural resource could be found on the Project site. However, a field survey of the Project site did not uncover any paleontological resources.1

Previous cultural resource investigations conducted for the Project area have not uncovered any paleontological resources within a quarter of a mile of the Project site.2

Archeological Resources

Linguistic evidence shows that between 8,000 and 6,000 B.C. inhabitants in the Walnut Creek area were Pre-Hokan speakers but by 4,000 B.C. Hokan languages had developed in the Walnut Creek area. Between 2000 B.C. and A.D. 1 Penutian speakers began to migrate into the area from the lower Sacramento Valley. Excavations in central Contra Costa County have found evidence of people living in the area as early as 2,500 B.C. Although the areas of Walnut Creek and Alamo where excavation of archaeological sites have taken place are closer to the San Francisco Bay (approximately 14 miles to the west), archaeological evidence at these sites shows that early in time site inhabitants had stronger ties to people living in the lower Sacramento Valley. By approximately A.D. 1, archaeological evidence shows that site inhabitants were more influenced by their neighbors to the west.

It appears that later in time site inhabitants developed their own culture that was distinct from their lower Sacramento Valley ancestors. This change in culture was likely evidence of the beginnings of the people known as the Saclan who lived in the Walnut Creek area when Europeans came to California. The Saclan belonged to the Bay Miwok branch of the Eastern Miwok. However, the Walnut Creek area is also near the boundary with the Costanoans. The Bay Miwok were hunter-gatherers who lived in a rich environment that allowed for dense populations. They settled in large, permanent villages about which were distributed seasonal camps and task-specific sites. Primary villages were inhabited throughout the year while other sites were visited seasonally to obtain

1 Tom Origer & Associates, 2013, A Cultural Resources Survey for The Landing at Walnut Creek, page 12.
2 Tom Origer & Associates, 2013, A Cultural Resources Survey for The Landing at Walnut Creek, page 8.
particular resources. Sites were often established near fresh water sources and at ecotones where plant and animal life was diverse and abundant. The environmental setting enjoyed by the Bay Miwok provided abundant plant and animal resources for their use.

While initial European arrival to the Walnut Creek area occurred in 1772, with the Captain Pedro Fages Spanish exploration party, permanent non-native settlement was not until 1849 when William Slusher built a cabin near what is now the intersection of Mt. Diablo Boulevard and South Main Street, on what became known as Walnut Creek.

Walnut Creek was known as “The Corners” until 1862 when the United States Postal Service established a post office. At that time the name was permanently changed to Walnut Creek. In 1871, Homer Shuey laid out the parcels around the intersection of Mt. Diablo Boulevard and South Main Street, which at the time were the main thoroughfares between Oakland and Antioch and then continuing out to the San Joaquin Valley, Livermore, and Pacheco. A year later, Shuey subdivided an even bigger area and established a street pattern for Walnut Creek’s downtown area.

From this point on, Walnut Creek slowly began to grow as settlers purchased land to live and build business on. That being said, Walnut Creek remained a small farming community. Early farming consisted primarily of grain crops (wheat mostly). It was not until the 1890s that people began to plant orchards which were a much more profitable crop than grain and hay. In 1891 the railroad came to Walnut Creek. One could now travel from San Francisco to Walnut Creek in two hours and forty-five minutes. Also during the 1890s, telephone service was brought to Walnut Creek. It was during this time that Walnut Creek began to develop into a suburb of the metropolitan centers of San Francisco and Oakland.

Over the next 40 years, Walnut Creek slowly grew and improved. In 1912 a new, bigger, school was constructed, in 1916 a library, and in 1918 the first sewer line was run down Main Street. In 1914, residents voted to become incorporated.

Like much of the nation, the Great Depression affected Walnut Creek, but the town did not decline in terms of growth. This was partially due to two large-scale projects located nearby: the construction of the Bay Bridge and what is now known as the Caldecott Tunnel.

Other than the influx of military personnel, World War II did not affect Walnut Creek significantly. However, the War did seem to bring an increase in crime to the small town. This prompted the construction of the first jail in the city at the fire station that was on Bonanza Street. By the end of WWII Walnut Creek had approximately 2,000 residents.

The year of 1950 signaled the beginning of substantial growth for the small town. It was during this year that construction began of the Broadway Shopping Center. Between 1950 and 1970 new highways were constructed that brought more traffic to the city.

Since 1970, Walnut Creek has continued to grow, though not to the extent that it did between 1950 and 1970. Various developmental projects have continued to take place. Most significantly, BART constructed a station in
1973 at the corner of Ygnacio Valley Road and North California Boulevard and Highway 680 was also constructed in the 1970s.3

Based on the result of pre-field research, it is possible that prehistoric and, to a lesser extent, historic-period archaeological resources could be found on the Project site. Prehistoric archaeological site indicators expected to be found in the region include, but are not limited to: obsidian and chert flakes and chipped stone tools, grinding and mashing implements, and locally darkened midden soils containing cultural resources. Historic period site indicators generally include: fragments of glass, ceramic, and metal objects; milled and split lumber; as well as structure and feature remains such as building foundations and discrete trash deposits. However, field survey of the Project site did not uncover any archeological resources.4

Previous cultural resource investigations conducted for the Project area have not uncovered any archaeological resources within $\frac{1}{4}$-mile of the Project site.5

Historical Resources

A review of historical maps does not indicate the historical presence of any buildings or structure on the Project site. There are no local, State, or federally recognized historic properties on the Project site or in the immediate vicinity.6 The on-site structures were examined to consider their eligibility for inclusion in the California Register and determined that the buildings are not eligible because they lack architectural distinction. In addition, because all of the on-site structures date to the mid-20th century, it was considered whether they may comprise a district eligible for inclusion on the California Register. The buildings were found to not be eligible as a district because they do not embody cohesiveness of architecture, design, or plan.7

The nearest historical building is located on Locust Street, within a $\frac{1}{4}$-mile of the Project site.8

4.6.2 STANDARDS OF SIGNIFICANCE

An Initial Study was prepared for the proposed Project (see Appendix A of this Draft EIR). Based on the analysis contained in the Initial Study it was determined that development of the proposed Project would not result in significant environmental impacts per the following significance standard and therefore, this standard is not discussed in this chapter.

- Disturb any human remains, including those interred outside of formal cemeteries.

3 Tom Origer & Associates, 2013, *A Cultural Resources Survey for The Landing at Walnut Creek*, pages 3 to 7.
5 Tom Origer & Associates, 2013, *A Cultural Resources Survey for The Landing at Walnut Creek*, page 8.
7 Tom Origer & Associates, 2013, *A Cultural Resources Survey for The Landing at Walnut Creek*, page 10.
8 Tom Origer & Associates, 2013, *A Cultural Resources Survey for The Landing at Walnut Creek*, page 8.
Based on the Initial Study it was determined that the proposed Project would result in a significant cultural resources impact if it would:

1. Cause a substantial adverse change in the significance of a historical resource as defined in Section 15064.5.
2. Cause a substantial adverse change in the significance of an archaeological resource pursuant to Section 15064.5.
3. Directly or indirectly destroy a unique paleontological resource or site or unique geologic feature.

4.6.3 IMPACT DISCUSSION

This section analyzes potential Project-specific and cumulative impacts to cultural resources.

CULT-1 The proposed Project would not cause a substantial adverse change in the significance of a historical resource as defined in Section 15064.5.

The proposed Project would demolish the existing residences on the Project site and redevelop the site with a new 178-unit apartment building. There are no local, State, or federally recognized historic properties on the Project site or in the immediate vicinity, and, although all of the on-site structures date to the mid-20th century, they are not eligible as a historic district.9 While as discussed above there is a historical building located on Locust Street, within a ¼-mile from the Project site, construction of the proposed Project would not affect this structure. Therefore, demolition of the existing buildings on the Project site would not affect any historic resources and the associated impact would be less than significant.

Significance Without Mitigation: Less than significant.

CULT-2 The proposed Project would not cause a substantial adverse change in the significance of an archaeological resource pursuant to Section 15064.5.

A field survey of the Project site did not uncover any archeological resources. Additionally, previous cultural resource investigations conducted for the Project area have not uncovered any archaeological resources within ¼-mile of the Project site.10 Nevertheless, it is possible that unknown buried archaeological materials could be found during ground disturbing Project construction activities. Action 24.1.2 of the Walnut Creek General Plan requires developers to halt all work if cultural resources are encountered during a project, and to retain a qualified archaeologist to evaluate and make recommendations for conservation and mitigation. Accordingly, inadvertent

9 Tom Origer & Associates, 2013, A Cultural Resources Survey for The Landing at Walnut Creek, page 10.
10 Tom Origer & Associates, 2013, A Cultural Resources Survey for The Landing at Walnut Creek, pages 8 and 12.
damage to unique, buried archaeological deposits during construction would result in a significant impact prior to mitigation.

Significance Without Mitigation: Significant.

CULT-3
The proposed Project would not directly or indirectly destroy a unique paleontological resource, site, or unique geologic feature.

A field survey of the Project site did not uncover any paleontological resources, and previous cultural resource investigations conducted for the Project area have not uncovered any paleontological resources within ¼-mile of the Project site. Nevertheless, it is possible that unknown buried paleontological materials could be found during ground disturbing Project construction activities. Action 24.1.2 of the Walnut Creek General Plan requires developers to halt all work if cultural resources are encountered during a project, and to retain a qualified archaeologist to evaluate and make recommendations for conservation and mitigation.

While fossils are not expected to be discovered during Project construction, it is possible that significant fossils could be discovered during excavation activities, even in areas with a low likelihood of occurrence. Fossils encountered during excavation could be inadvertently damaged. If a unique paleontological resource is discovered, the impact to the resource could be substantial. This would result in a significant impact without mitigation.

Significance Without Mitigation: Significant.

4.6.4 CUMULATIVE IMPACTS

CULT-4
The proposed Project, in combination with past, present and reasonably foreseeable projects, would result in less than significant cumulative impacts with respect to Cultural Resources.

Cumulative impacts would occur when a series of actions leads to the loss of a substantial type of site, building, or resource. For example, while the loss of a single historic building may not be significant to the character of a neighborhood or streetscape, continued loss of such resources on a project-by-project basis could constitute a significant cumulative effect. This is most obvious in historic districts, where destruction or alteration of a percentage of the contributing elements may lead to a loss of integrity for the district overall. For example, changes to the setting or atmosphere of an area by adding modern structures on all sides of a historically significant building, thus altering the aesthetics of the streetscape, would create a significant impact. Destruction or relocation of historic buildings would also significantly impact the setting.

As there are no significant historic structures and no known archaeological resources, paleontological resources, or human remains on the Project site, development of the proposed Project would not create or contribute to a

cumulative impact on cultural resources. Additionally, the existing federal, State, and local regulations and policies described throughout this chapter serve to protect any as-yet-undiscovered cultural resources in Walnut Creek. Continued compliance with these regulations and implementation of existing policies, including applicable General Plan 2025 policies, would preclude impacts to historical, archaeological, and paleontological resources and to human remains to the maximum extent practicable. Therefore, in combination with past, present, and reasonably foreseeable projects, the proposed Project would result in a less-than-significant cumulative impact with respect to cultural resources.

Significance Without Mitigation: Less than significant.

4.6.5 SUMMARY OF SIGNIFICANT IMPACTS AND MITIGATION MEASURES

With implementation of Mitigation Measures CULT-2 and CULT-3, the proposed Project would not result in any significant or cumulative impacts with respect to cultural resources.

<table>
<thead>
<tr>
<th>CULT-2</th>
<th>The proposed Project would cause a substantial adverse change in the significance of an archaeological resource pursuant to Section 15064.5.</th>
</tr>
</thead>
</table>

No previously recorded archaeological sites exist within the Project site; however, inadvertent damage to unique buried archaeological deposits during construction would result in a significant impact.

Mitigation Measure CULT-2: If any prehistoric or historic subsurface cultural resources are discovered during ground-disturbing activities, all work within 50 feet of the resources shall be halted and a qualified archaeologist shall be consulted to assess the significance of the find according to CEQA Guidelines Section 15064.5. If any find is determined to be significant, representatives from the City and the archaeologist would meet to determine the appropriate avoidance measures or other appropriate mitigation. All significant cultural materials recovered shall be, as necessary and at the discretion of the consulting archaeologist, subject to scientific analysis, professional museum curation, and documentation according to current professional standards. In considering any suggested mitigation proposed by the consulting archaeologist to mitigate impacts to historical resources or unique archaeological resources, the City shall determine whether avoidance is necessary and feasible in light of factors such as the nature of the find, Project design, costs, and other considerations. If avoidance is infeasible, other appropriate measures (e.g., data recovery) would be instituted. Work may proceed on other parts of the Project site while mitigation for historical resources or unique archaeological resources is being carried out.

Significance with Mitigation: Implementation of Mitigation Measure CULT-2, described above, it would ensure that potential impacts resulting in a substantial adverse change in the significance of an archaeological resource from development of the Project would be less than significant.
CULTURAL RESOURCES

CULT-3 The proposed Project would directly or indirectly destroy a unique paleontological resource, site or unique geologic feature.

While fossils are not expected to be discovered during Project construction, significant fossils could be discovered during excavation activities, even in areas with a low likelihood of occurrence. Fossils encountered during excavation could be inadvertently damaged. If a unique paleontological resource is discovered, the impact to the resource could be substantial.

Mitigation Measure CULT-3: In the event that fossils or fossil-bearing deposits are discovered during construction, excavations within 50 feet of the find shall be temporarily halted or diverted. The contractor shall notify a qualified paleontologist to examine the discovery. The paleontologist shall document the discovery as needed, in accordance with Society of Vertebrate Paleontology standards (Society of Vertebrate Paleontology 1995), evaluate the potential resource, and assess the significance of the find under the criteria set forth in CEQA Guidelines Section 15064.5. The paleontologist shall notify the appropriate agencies to determine procedures that would be followed before construction is allowed to resume at the location of the find. If the Project proponent determines that avoidance is not feasible, the paleontologist shall prepare an excavation plan for mitigating the effect of the Project based on the qualities that make the resource important. The plan shall be submitted to the City for review and approval prior to implementation.

Significance With Mitigation: Implementation of Mitigation Measure CULT-3 would ensure that potential impacts related to direct or indirect destruction of a unique paleontological resource or site, or a unique geologic feature from development of the Project would be less than significant.
4.7 GREENHOUSE GAS EMISSIONS

This chapter describes and examines the greenhouse gas (GHG) emissions impacts associated with the proposed Project. This chapter is based on the methodology recommended by the Bay Area Air Quality Management District (BAAQMD) for project-level review. Because no single project is large enough to result in a measurable increase in global concentrations of GHG emissions, global warming impacts of a project are considered on a cumulative basis. This chapter evaluates the potential for the proposed Project to cumulatively contribute to GHG emissions impacts in California. The transportation sector analysis is based on average daily vehicle trips and vehicle miles traveled (VMT) provided by Fehr & Peers. The GHG emissions are modeled using the California Emissions Estimator Model (CalEEMod), Version 2013.2.2. The GHG emissions modeling is included in Appendix C of this EIR.

4.7.1 ENVIRONMENTAL SETTING

Greenhouse Gases and Climate Change

Scientists have concluded that human activities are contributing to global climate change by adding large amounts of heat-trapping gases, known as GHG, to the atmosphere. The primary source of these GHG is fossil fuel use. The Intergovernmental Panel on Climate Change (IPCC) has identified four major GHG—water vapor, carbon dioxide (CO₂), methane (CH₄), and ozone (O₃)—that are the likely cause of an increase in global average temperatures observed within the 20th and 21st centuries. Other GHG identified by the IPCC that contribute to global warming to a lesser extent include nitrous oxide (N₂O), sulfur hexafluoride (SF₆), hydrofluorocarbons, perfluorocarbons, and chlorofluorocarbons.¹ ² ³ Table 4.7-1 lists the GHG applicable to the proposed Project and their relative global warming potentials (GWP) compared to CO₂.

² Water vapor (H₂O) is the strongest GHG and the most variable in its phases (vapor, cloud droplets, ice crystals). However, water vapor is not considered a pollutant.
³ Black carbon contributes to climate change both directly, by absorbing sunlight, and indirectly, by depositing on snow (making it melt faster) and by interacting with clouds and affecting cloud formation. Black carbon is the most strongly light-absorbing component of particulate matter (PM) emitted from burning fuels such as coal, diesel, and biomass. Reducing black carbon emissions globally can have immediate economic, climate, and public health benefits. California has been an international leader in reducing emissions of black carbon, with close to 95 percent control expected by 2020 due to existing programs that target reducing PM from diesel engines and burning activities. California Air Resources Board (CARB), 2013. Climate Change Scoping Plan First Update, http://www.arb.ca.gov/cc/scopingplan/2013_update/discussion_draft.pdf.
<table>
<thead>
<tr>
<th>GHGs</th>
<th>Atmospheric Lifetime (Years)</th>
<th>Global Warming Potential Relative to CO₂a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Dioxide (CO₂)</td>
<td>50 to 200</td>
<td>1</td>
</tr>
<tr>
<td>Methane (CH₄)b</td>
<td>12 (±3)</td>
<td>21</td>
</tr>
<tr>
<td>Nitrous Oxide (N₂O)</td>
<td>120</td>
<td>310</td>
</tr>
<tr>
<td>Hydrofluorocarbons:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HFC-23</td>
<td>264</td>
<td>11,700</td>
</tr>
<tr>
<td>HFC-32</td>
<td>5.6</td>
<td>650</td>
</tr>
<tr>
<td>HFC-125</td>
<td>32.6</td>
<td>2,800</td>
</tr>
<tr>
<td>HFC-134a</td>
<td>14.6</td>
<td>1,300</td>
</tr>
<tr>
<td>HFC-143a</td>
<td>48.3</td>
<td>3,800</td>
</tr>
<tr>
<td>HFC-152a</td>
<td>1.5</td>
<td>140</td>
</tr>
<tr>
<td>HFC-227ea</td>
<td>36.5</td>
<td>2,900</td>
</tr>
<tr>
<td>HFC-236fa</td>
<td>209</td>
<td>6,300</td>
</tr>
<tr>
<td>HFC-4310mee</td>
<td>17.1</td>
<td>1,300</td>
</tr>
<tr>
<td>Perfluoromethane (CF₃)</td>
<td>50,000</td>
<td>6,500</td>
</tr>
<tr>
<td>Perfluoroethane (C₂F₆)</td>
<td>10,000</td>
<td>9,200</td>
</tr>
<tr>
<td>Perfluorobutane (C₃F₁₀)</td>
<td>2,600</td>
<td>7,000</td>
</tr>
<tr>
<td>Perfluoro-2-methylpentane (C₆F₁₄)</td>
<td>3,200</td>
<td>7,400</td>
</tr>
<tr>
<td>Sulfur Hexafluoride (SF₆)</td>
<td>3,200</td>
<td>23,900</td>
</tr>
</tbody>
</table>

b. The methane GWP includes direct effects and indirect effects due to the production of tropospheric ozone and stratospheric water vapor. The indirect effect due to the production of CO₂ is not included.

The major GHGs are briefly described below.

- **Carbon dioxide** (CO₂) enters the atmosphere through the burning of fossil fuels (oil, natural gas, and coal), solid waste, trees and wood products, and respiration, and also as a result of other chemical reactions (e.g., manufacture of cement). Carbon dioxide is removed from the atmosphere (sequestered) when it is absorbed by plants as part of the biological carbon cycle.

- **Methane** (CH₄) is emitted during the production and transport of coal, natural gas, and oil. Methane emissions also result from livestock and other agricultural practices and from the decay of organic waste in municipal landfills and water treatment facilities.

- **Nitrous oxide** (N₂O) is emitted during agricultural and industrial activities as well as during combustion of fossil fuels and solid waste.

- **Fluorinated gases** are synthetic, strong GHGs that are emitted from a variety of industrial processes. Fluorinated gases are sometimes used as substitutes for ozone-depleting substances. These gases are typically emitted in smaller quantities, but because they are potent GHGs, they are sometimes referred to as High GWP gases.

- **Chlorofluorocarbons** (CFCs) are GHGs covered under the 1987 Montreal Protocol and used for refrigeration, air conditioning, packaging, insulation, solvents, or aerosol propellants. Since they are not destroyed in the lower atmosphere (troposphere, stratosphere), CFCs drift into the upper atmosphere where, given suitable conditions, they break down ozone. These gases are also ozone-depleting gases and are therefore being replaced by other compounds that are GHGs covered under the Kyoto Protocol.

- **Perfluorocarbons** (PFCs) are a group of human-made chemicals composed of carbon and fluorine only. These chemicals (predominantly perfluoromethane [CF₄] and perfluoroethane [C₂F₆]) were introduced as alternatives, along with HFCs, to the ozone-depleting substances. In addition, PFCs are emitted as by-products of industrial processes and are used in manufacturing. PFCs do not harm the stratospheric ozone layer, but they have a high global warming potential.

- **Sulfur Hexafluoride** (SF₆) is a colorless gas soluble in alcohol and ether, slightly soluble in water. SF₆ is a strong GHG used primarily in electrical transmission and distribution systems as an insulator.

- **Hydrochlorofluorocarbons** (HCFCs) contain hydrogen, fluorine, chlorine, and carbon atoms. Although ozone-depleting substances, they are less potent at destroying stratospheric ozone than CFCs. They have been introduced as temporary replacements for CFCs and are also GHGs.

- **Hydrofluorocarbons** (HFCs) contain only hydrogen, fluorine, and carbon atoms. They were introduced as alternatives to ozone-depleting substances to serve many industrial, commercial, and personal needs. HFCs are emitted as by-products of industrial processes and are also used in manufacturing. They do not significantly deplete the stratospheric ozone layer, but they are strong GHGs.⁴,

California’s Greenhouse Gas Sources and Relative Contribution

California is the second largest emitter of GHG in the United States, only surpassed by Texas, and the tenth largest GHG emitter in the world.\(^7\) However, California also has over 12 million more people than the state of Texas. Because of more stringent air emission regulations, in 2001 California ranked fourth lowest in carbon emissions per capita and fifth lowest among states in CO\(_2\) emissions from fossil fuel consumption per unit of Gross State Product (total economic output of goods and services).\(^8\)

CARB’s latest update to the statewide GHG emissions inventory was conducted in 2012 for year 2009 emissions.\(^9\) In 2009, California produced 457 million metric tons (MMT) of CO\(_2\)-equivalent (CO\(_2\)e) GHG emissions. Caruthers’s transportation sector is the single largest generator of GHG emissions, producing 37.9 percent of the State’s total emissions. Electricity consumption is the second largest source, comprising 22.7 percent. Industrial activities are California’s third largest source of GHG emissions, comprising 17.8 percent of the state’s total emissions. Other major sectors of GHG emissions include commercial and residential, recycling and waste, high global warming potential GHGs, agriculture, and forestry.\(^10,11\)

Human Influence on Climate Change

For approximately 1,000 years before the Industrial Revolution, the amount of GHG in the atmosphere remained relatively constant. During the 20th century, however, scientists observed a rapid change in the climate and climate change pollutants that are attributable to human activities. The amount of CO\(_2\) has increased by more than 35 percent since preindustrial times and has increased at an average rate of 1.4 parts per million (ppm) per year since 1960, mainly due to combustion of fossil fuels and deforestation.\(^12\) These recent changes in climate change pollutants far exceed the extremes of the ice ages, and the global mean temperature is warming at a rate that cannot be explained by natural causes alone. Human activities are directly altering the chemical composition of the atmosphere through the buildup of climate change pollutants.\(^13\)

Climate-change scenarios are affected by varying degrees of uncertainty. IPCC’s “2007 IPCC Fourth Assessment Report” projects that the global mean temperature increase from 1990 to 2100, under different climate-change scenarios, will range from 1.4 to 5.8°C (2.5 to 10.4°F). In the past, gradual changes in the earth’s temperature

\(^9\) Methodology for determining the statewide GHG inventory is not the same as the methodology used to determine statewide GHG emissions under Assembly Bill 32 (AB 32) (2006).

\(^10\) CO\(_2\)-equivalence is used to show the relative potential that different GHGs have to retain infrared radiation in the atmosphere and contribute to the greenhouse effect. The global warming potential of a GHG is also dependent on the lifetime, or persistence, of the gas molecule in the atmosphere.

\(^13\) California Climate Action Team (CAT), 2006. Climate Action Team Report to Governor Schwarzenegger and the Legislature.
changed the distribution of species, availability of water, etc. However, human activities are accelerating this process so that environmental impacts associated with climate change no longer occur in a geologic time frame but within a human lifetime.14

Potential Climate Change Impacts for California

Like the variability in the projections of the expected increase in global surface temperatures, the environmental consequences of gradual changes in the Earth’s temperature are also hard to predict. In California and western North America, observations of the climate have shown: 1) a trend toward warmer winter and spring temperatures, 2) a smaller fraction of precipitation falling as snow, 3) a decrease in the amount of spring snow accumulation in the lower and middle elevation mountain zones, 4) an advance snowmelt of 5 to 30 days earlier in the springs, and 5) a similar shift (5 to 30 days earlier) in the timing of spring flower blooms.15 According to the California Climate Action Team, even if actions could be taken to immediately curtail climate change emissions, the potency of emissions that have already built up, their long atmospheric lifetimes (see Table 4.13-1), and the inertia of the Earth’s climate system could produce as much as 0.6°C (1.1°F) of additional warming. Consequently, some impacts from climate change are now considered unavoidable. Global climate change risks to California are shown in Table 4.7-2 and include public health impacts, water resources impacts, agricultural impacts, coastal sea level impacts, forest and biological resource impacts, and energy impacts. Specific climate change impacts that could affect the Project include health impacts from a deterioration in air quality, water resources impacts from a reduction in water supply, and increased energy demand.

4.7.1.2 REGULATORY FRAMEWORK

Federal Laws and Regulations

The U.S. Environmental Protection Agency (EPA) announced on December 7, 2009, that GHG emissions threaten the public health and welfare of the American people and that GHG emissions from on-road vehicles contribute to that threat. The EPA’s final findings respond to the 2007 U.S. Supreme Court decision that GHG emissions fit within the Clean Air Act definition of air pollutants. The findings do not in and of themselves impose any emission reduction requirements, but allow the EPA to finalize the GHG standards proposed in 2009 for new light-duty vehicles as part of the joint rulemaking with the Department of Transportation.16

The EPA’s endangerment finding covers emissions of six key GHGs—CO₂, CH₄, N₂O, hydrofluorocarbons, perfluorocarbons, and SF₆—that have been the subject of scrutiny and intense analysis for decades by scientists in the United States and around the world (the first three are applicable to the proposed Project).

15 California Climate Action Team (CAT), 2006. Climate Action Team Report to Governor Schwarzenegger and the Legislature.
TABLE 4.7-2 SUMMARY OF GREENHOUSE GAS EMISSION RISKS TO CALIFORNIA

<table>
<thead>
<tr>
<th>Impact Category</th>
<th>Potential Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Health Impacts</td>
<td>Poor air quality made worse</td>
</tr>
<tr>
<td></td>
<td>More severe heat</td>
</tr>
<tr>
<td>Water Resources Impacts</td>
<td>Decreasing Sierra Nevada snow pack</td>
</tr>
<tr>
<td></td>
<td>Challenges in securing adequate water supply</td>
</tr>
<tr>
<td></td>
<td>Potential reduction in hydropower</td>
</tr>
<tr>
<td></td>
<td>Loss of winter recreation</td>
</tr>
<tr>
<td>Agricultural Impacts</td>
<td>Increasing temperature</td>
</tr>
<tr>
<td></td>
<td>Increasing threats from pests and pathogens</td>
</tr>
<tr>
<td></td>
<td>Expanded ranges of agricultural weeds</td>
</tr>
<tr>
<td></td>
<td>Declining productivity</td>
</tr>
<tr>
<td></td>
<td>Irregular blooms and harvests</td>
</tr>
<tr>
<td>Coastal Sea Level Impacts</td>
<td>Accelerated sea level rise</td>
</tr>
<tr>
<td></td>
<td>Increasing coastal floods</td>
</tr>
<tr>
<td></td>
<td>Shrinking beaches</td>
</tr>
<tr>
<td></td>
<td>Worsened impacts on infrastructure</td>
</tr>
<tr>
<td>Forest and Biological Resource Impacts</td>
<td>Increased risk and severity of wildfires</td>
</tr>
<tr>
<td></td>
<td>Lengthening of the wildfire season</td>
</tr>
<tr>
<td></td>
<td>Movement of forest areas</td>
</tr>
<tr>
<td></td>
<td>Conversion of forest to grassland</td>
</tr>
<tr>
<td></td>
<td>Declining forest productivity</td>
</tr>
<tr>
<td></td>
<td>Increasing threats from pest and pathogens</td>
</tr>
<tr>
<td></td>
<td>Shifting vegetation and species distribution</td>
</tr>
<tr>
<td></td>
<td>Altered timing of migration and mating habits</td>
</tr>
<tr>
<td></td>
<td>Loss of sensitive or slow-moving species</td>
</tr>
<tr>
<td>Energy Demand Impacts</td>
<td>Potential reduction in hydropower</td>
</tr>
<tr>
<td></td>
<td>Increased energy demand</td>
</tr>
</tbody>
</table>

In response to the endangerment finding, the EPA issued the Mandatory Reporting of GHG Rule that requires substantial emitters of GHG emissions (large stationary sources, etc.) to report GHG emissions data. Facilities that emit 25,000 metric tons (MT) or more of CO₂ per year are required to submit an annual report.

Executive Order S-03-05

Executive Order S-3-05, signed June 1, 2005 set the following GHG reduction targets for the State:
- 2000 levels by 2010.
- 1990 levels by 2020.
- 80 percent below 1990 levels by 2050.
State Regulations

Current State of California guidance and goals for reductions in GHG emissions are generally embodied in Executive Order S-03-05, Assembly Bill 32, and Senate Bill 375.

Assembly Bill 32, the Global Warming Solutions Act (2006)

Current State of California guidance and goals for reductions in GHG emissions are generally embodied in Assembly Bill 32 (AB 32), the Global Warming Solutions Act. AB 32 was passed by the California State Legislature on August 31, 2006, to place the state on a course toward reducing its contribution of GHG emissions. AB 32 follows the 2020 tier of emissions reduction targets established in Executive Order S-3-05.

AB 32 directed the California Resources Board (CARB) to adopt discrete early action measures to reduce GHG emissions and outline additional reduction measures to meet the 2020 target. Based on the GHG emissions inventory conducted for the Scoping Plan by CARB, GHG emissions in California by 2020 are anticipated to be approximately 596 MMTCO2e. In December 2007, CARB approved a 2020 emissions limit of 427 MMTCO2e (471 million tons) for the State. The 2020 target requires a total emissions reduction of 169 MMTons, 28.5 percent from the projected emissions of the business-as-usual (BAU) scenario for the year 2020 (i.e., 28.5 percent of 596 MMTCO2e). \(^{17,18}\)

In order to effectively implement the emissions cap, AB 32 directed CARB to establish a mandatory reporting system to track and monitor GHG emissions levels for large stationary sources that generate more than 25,000 MT of CO2 per year, prepare a plan demonstrating how the 2020 deadline can be met, and develop appropriate regulations and programs to implement the plan by 2012. The Climate Action Registry Reporting Online Tool was established through the Climate Action Registry to track GHG emissions.

CARB 2008 Scoping Plan

The final Scoping Plan was adopted by CARB on December 11, 2008. Key elements of CARB’s GHG reduction plan that may be applicable to the proposed Project include:

- Expanding and strengthening existing energy efficiency programs as well as building and appliance standards (adopted and cycle updates in progress);
- Achieving a mix of 33 percent for energy generation from renewable sources (anticipated by 2020);
- A California cap-and-trade program that links with other Western Climate Initiative partner programs to create a regional market system for large stationary sources (adopted 2011);

\(^{17}\) California Air Resources Board (CARB), 2008. *Climate Change Scoping Plan, a Framework for Change.*

\(^{18}\) CARB defines BAU in its Scoping Plan as emissions levels that would occur if California continued to grow and add new GHG emissions but did not adopt any measures to reduce emissions. Projections for each emission-generating sector were compiled and used to estimate emissions for 2020 based on 2002–2004 emissions intensities. Under CARB’s definition of BAU, new growth is assumed to have the same carbon intensities as was typical from 2002 through 2004.
Establishing targets for transportation-related GHG emissions for regions throughout California, and pursuing policies and incentives to achieve those targets (several Sustainable Communities Strategies have been adopted);

Creating target fees, including a public goods charge on water use, fees on high global warming potential gases, and a fee to fund the administrative costs of the State’s long-term commitment to AB 32 implementation (in progress).

Though local government operations were not accounted for in achieving the 2020 emissions reduction, CARB estimates that land use changes implemented by local governments that integrate jobs, housing, and services result in a reduction of 5 MMTCO2e, which is approximately 3 percent of the 2020 GHG emissions reduction goal. In recognition of the critical role local governments play in the successful implementation of AB 32, CARB is recommending GHG reduction goals of 15 percent of today’s levels by 2020 to ensure that municipal and community-wide emissions match the State’s reduction target.20 Measures that local governments take to support shifts in land use patterns are anticipated to emphasize compact, low-impact growth over development in greenfields, resulting in fewer VMT.21

Update to the 2008 Scoping Plan

Since release of the 2008 Scoping Plan, CARB has updated the statewide GHG emissions inventory to reflect GHG emissions in light of the economic downturn and of measures not previously considered in the 2008 Scoping Plan baseline inventory. The updated forecast predicts emissions to be 507 MMTCO2e by 2020. The new inventory identifies that an estimated 80 MMTCO2e of reductions are necessary to achieve the statewide emissions reduction of AB 32 by 2020, 15.6 percent of the projected emissions compared to BAU in year 2020 (i.e., 15.6 percent of 507 MMTCO2e).22

CARB is in the process of completing a five-year update to the 2008 Scoping Plan, as required by AB 32. A discussion draft of the 2013 Scoping Plan was released on October 1, 2013. The 2013 Scoping Plan update defines CARB’s climate change priorities for the next five years and lays the groundwork to reach post-2020 goals in Executive Orders S-3-05 and B-16-2012. The update includes the latest scientific findings related to climate change

19 On December 29, 2011, the U.S. District Court for the Eastern District of California issued several rulings in the federal lawsuits challenging the LCFS. One of the court’s rulings preliminarily enjoined the CARB from enforcing the regulation during the pendency of the litigation. In January 2012, CARB appealed the decision and on April 23, 2012, the Ninth Circuit Court granted CARB’s motion for a stay of the injunction while it continued to consider CARB’s appeal of the lower court’s decision. On July 15, 2013, the State of California Court of Appeals held that the LCFS would remain in effect and that CARB can continue to implement and enforce the 2013 regulatory standards while it corrects certain aspects of the procedures by which the LCFS was adopted. Accordingly, CARB is continuing to implement and enforce the LCFS while addressing the court’s concerns.

20 The Scoping Plan references a goal for local governments to reduce community GHG emissions by 15 percent from current (interpreted as 2008) levels by 2020, but it does not rely on local GHG reduction targets established by local governments to meet the State’s GHG reduction target of AB 32.

and its impacts, including short-lived climate pollutants. The GHG target identified in the 2008 Scoping Plan is based on IPCC’s GWPs identified in the Second and Third Assessment Reports (see Table 4.7-1). IPCC’s Fourth Assessment Report identified more recent GWP values based on the latest available science. CARB recalculated the 1990 GHG emission levels with these updated GWPs, and the 427 MMTCO\textsubscript{2e} 1990 emissions level and 2020 GHG emissions limit, established in response to AB 32, is slightly higher, at 431 MMTCO\textsubscript{2e}.23

The 2013 update highlights California’s progress toward meeting the near-term 2020 GHG emission reduction goals defined in the original 2008 Scoping Plan. As identified in the 2013 Scoping Plan update, California is on track to meeting the goals of AB 32. However, the 2013 Scoping Plan also addresses the state’s longer-term GHG goals within a post-2020 element. The post-2020 element provides a high level view of a long-term strategy for meeting the 2050 GHG goals, including a recommendation for the state to adopt a midterm target. According to the 2013 Scoping Plan update, reducing emissions to 80 percent below 1990 levels will require a fundamental shift to efficient, clean energy in every sector of the economy. Progressing toward California’s 2050 climate targets will require significant acceleration of GHG reduction rates. Emissions from 2020 to 2050 will have to decline several times faster than the rate needed to reach the 2020 emissions limit.24

\textbf{Senate Bill 375}

In 2008, Senate Bill 375 (SB 375), the Sustainable Communities and Climate Protection Act, was adopted to connect the GHG emissions reductions targets established in the Scoping Plan for the transportation sector to local land use decisions that affect travel behavior. Its intent is to reduce GHG emissions from light-duty trucks and automobiles (excludes emissions associated with goods movement) by aligning regional long-range transportation plans, investments, and housing allocations to local land use planning to reduce VMT and vehicle trips. Specifically, SB 375 required CARB to establish GHG emissions reduction targets for each of the 17 regions in California managed by a metropolitan planning organization (MPO). The Metropolitan Transportation Commission (MTC) is the MPO for the nine-county San Francisco Bay Area region. MTC’s targets are a 7 percent per capita reduction from 2005 by 2020, and 15 percent per capita reduction from 2005 by 2035.25

\textbf{Plan Bay Area, Strategy for a Sustainable Region}

The MTC and Association of Bay Area Government’s (ABAG) Plan Bay Area is the Bay Area’s Regional Transportation Plan (RTP)/Sustainable Community Strategy (SCS). The Plan Bay Area was adopted July 18, 2013.26 The SCS sets a development pattern for the region, which, when integrated with the transportation network and other transportation measures and policies, would reduce GHG emissions from transportation (excluding goods movement) beyond the per capita reduction targets identified by CARB. According to Plan Bay Area, the Plan meets a 16 percent per capita reduction of GHG emissions by 2035 and a 10 percent per capita reduction by 2020 from 2005 conditions. In 2008, MTC and ABAG initiated a regional effort (FOCUS) to link local planned

26It should be noted that the Bay Area Citizens, Communities for a Better Environment, the Building Industry Association, and the Post-Sustainability Institute filed lawsuits on MTC’s and ABAG’s adoption of Plan Bay Area.
development with regional land use and transportation planning objectives. Through this initiative, local governments identified Priority Development Areas (PDAs) and Priority Conservation Areas (PCAs). PDAs and PCAs form the implementing framework for Plan Bay Area. There is one PDA identified in Plan Bay Area in the City of Walnut Creek: Walnut Creek West Downtown PDA.27 The Project site is within this PDA.

Assembly Bill 1493

California vehicle GHG emission standards were enacted under AB 1493 (Pavley I). Pavley I is a clean-car standard that reduces GHG emissions from new passenger vehicles (light-duty auto to medium-duty vehicles) from 2009 through 2016 and is anticipated to reduce GHG emissions from new passenger vehicles by 30 percent in 2016. California implements the Pavley I standards through a waiver granted to California by the EPA. In 2012, the EPA issued a Final Rulemaking that sets even more stringent fuel economy and GHG emissions standards for model year 2017 through 2025 light-duty vehicles.

Executive Order B-16-2012

On March 23, 2012, the state identified that CARB, the CEC, the Public Utilities Commission, and other relevant agencies worked with the Plug-in Electric Vehicle Collaborative and the California Fuel Cell Partnership to establish benchmarks to accommodate zero-emissions vehicles in major metropolitan areas, including infrastructure to support them (e.g., electric vehicle charging stations). The executive order also directs the number of zero-emission vehicles in California's state vehicle fleet to increase through the normal course of fleet replacement so that at least 10 percent of fleet purchases of light-duty vehicles are zero-emission by 2015 and at least 25 percent by 2020. The executive order also establishes a target for the transportation sector of reducing GHG emissions from the transportation sector 80 percent below 1990 levels.

Executive Order S-01-07

On January 18, 2007, the State set a new Low Carbon Fuel Standard (LCFS) for transportation fuels sold within the State. Executive Order S-1-07 sets a declining standard for GHG emissions measured in carbon dioxide equivalent gram per unit of fuel energy sold in California. The LCFS requires a reduction of 2.5 percent in the carbon intensity of California's transportation fuels by 2015 and a reduction of at least 10 percent by 2020. The Low Carbon Fuel Standard applies to refiners, blenders, producers, and importers of transportation fuels and would use market-based mechanisms to allow these providers to choose how they reduce emissions during the “fuel cycle” using the most economically feasible methods.

Senate Bills 1078 and 107 and Executive Order S-14-08

A major component of California’s Renewable Energy Program is the renewable portfolio standard (RPS) established under Senate Bills 1078 (Sher) and 107 (Simitian). Under the RPS, certain retail sellers of electricity were required to increase the amount of renewable energy each year by at least 1 percent in order to reach at least 20 percent by December 30, 2010. CARB has now approved an even higher goal of 33 percent by 2020. In 2011, the State Legislature adopted this higher standard in SBX1-2. Executive Order S-14-08 was signed in November 2011.

27 Metropolitan Transportation Commission (MTC) and Association of Bay Area Governments (ABAG), 2013. *Plan Bay Area*, http://geocommons.com/maps/1419779.
2008, which expands the state’s Renewable Energy Standard to 33 percent renewable power by 2020. Renewable sources of electricity include wind, small hydropower, solar, geothermal, biomass, and biogas. The increase in renewable sources for electricity production will decrease indirect GHG emissions from development projects because electricity production from renewable sources is generally considered carbon neutral.

California Building Code

Energy conservation standards for new residential and nonresidential buildings were adopted by the California Energy Resources Conservation and Development Commission (CEC) in June 1977 and most recently revised in 2008 (Title 24, Part 6, of the California Code of Regulations [CCR]). Title 24 requires the design of building shells and building components to conserve energy. The standards are updated periodically to allow for consideration and possible incorporation of new energy efficiency technologies and methods. On May 31, 2012, the CEC adopted the 2013 Building and Energy Efficiency Standards, which go into effect on January 1, 2014. Buildings that are constructed in accordance with the 2013 Building and Energy Efficiency Standards are 25 percent (residential) to 30 percent (nonresidential) more energy efficient than the 2008 standards as a result of better windows, insulation, lighting, ventilation systems, and other features that reduce energy consumption in homes and businesses.

On July 17, 2008, the California Building Standards Commission adopted the nation’s first green building standards. The California Green Building Standards Code (Part 11, Title 24, known as “CALGreen”) was adopted as part of the California Building Standards Code (Title 24, California Code of Regulations). CALGreen established planning and design standards for sustainable site development, energy efficiency (in excess of the California Energy Code requirements), water conservation, material conservation, and internal air contaminants. The mandatory provisions of the California Green Building Code Standards became effective January 1, 2011.

2006 Appliance Efficiency Regulations

The 2006 Appliance Efficiency Regulations (Title 20, CCR Sections 1601 through 1608) were adopted by the California Energy Commission on October 11, 2006, and approved by the California Office of Administrative Law on December 14, 2006. The regulations include standards for both federally regulated appliances and non-federally regulated appliances. Though these regulations are now often viewed as “business-as-usual,” they exceed the standards imposed by all other states and they reduce GHG emissions by reducing energy demand.

Local Regulations and Policies – City of Walnut Creek Climate Action Plan

The City of Walnut Creek approved its Climate Action Plan (CAP) on April 17, 2012. The City’s CAP identifies energy use, transportation, land use, and solid waste strategies to reduce Walnut Creek’s GHG emissions levels to 15 percent below 2005 levels by 2020.

28 Although new building energy efficiency standards were adopted in April 2008, these standards did not go into effect until 2009.

29 The green building standards became mandatory in the 2010 edition of the code.

30 Walnut Creek, City of. 2012. City of Walnut Creek Climate Action Plan.
4.7.1.3 Existing Conditions

The existing Project site is developed with 4 single-family residences and 17 multi-family dwelling units. The existing residential uses generate criteria air pollutants from vehicle trips, use of natural gas used for heating and cooling, and other area sources on-site (e.g., refrigerants, aerosols, etc.). According to the traffic study prepared by Fehr & Peers, the existing residences generate 213 daily vehicle trips (640 VMT). Existing GHG emissions generated by the land uses on-site is summarized in Table 4.7-3.

Table 4.7-3 Existing GHG Emissions Inventory

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>2013 Existing Emissions (MTCO₂e/Year)</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area Sources</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Energy Use</td>
<td>44</td>
<td>34</td>
</tr>
<tr>
<td>Mobile Sources</td>
<td>75</td>
<td>58</td>
</tr>
<tr>
<td>Waste Generation</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Water/Wastewater</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>129</td>
<td>100%</td>
</tr>
<tr>
<td>Total without Waste Generation¹</td>
<td>124</td>
<td>NA</td>
</tr>
<tr>
<td>MTCO₂e/Service Population (SP)</td>
<td>2.9</td>
<td>NA</td>
</tr>
</tbody>
</table>

¹. Waste emissions are not included in the per capita emissions computation. BAAQMD did not include solid waste emissions when developing the per capita significance thresholds. However, if these emissions are included in the analysis for the existing, existing per capita emissions would be 3.0 MTCO₂e/SP/yr.

Source: CalEEMod 2013.2.2. Based on the trip generation and VMT provided by Fehr & Peers.

4.7.2 Standards of Significance

4.7.2.1 CEQA Thresholds

The GHG impacts associated with the proposed Project would be considered significant if the Project would:

1. Generate GHG emissions, either directly or indirectly, that may have a significant impact on the environment.
2. Conflict with an applicable plan, policy, or regulation adopted for the purpose of reducing the emissions of GHGs.
4.7.2.2 BAAQMD THRESHOLDS

The BAAQMD adopted CEQA Guidelines in June 2010, which were revised in May 2011. The Guidelines include methodology and thresholds for Plan-Level and Project-Level GHG analyses. The proposed Project is evaluated under BAAQMD’s Project-Level criteria.

Project-Level Greenhouse Gas Criteria

The BAAQMD has a tiered approach for assessing GHG emission impacts of a project. If a project is within the jurisdiction of an agency that has a “qualified” GHG reduction strategy, the project can assess consistency of its GHG emissions impacts with the reduction strategy outlined. The City of Walnut Creek has prepared a CAP. However, BAAQMD has not identified Walnut Creek’s CAP as a “qualified” GHG reduction plan. However, measures in the City’s CAP represent the City’s GHG reduction strategy; therefore, the project is evaluated for consistency with the GHG reduction measures in this planning document.

In the absence of an applicable qualified GHG reduction strategy, BAAQMD has adopted screening criteria and significance criteria for development projects that would be applicable for the proposed Project. If a project exceeds the Guidelines’ GHG screening-level sizes, the project would be required to conduct a full GHG analysis using the following BAAQMD’s significance criteria:

- 1,100 MT of CO₂e per year; or
- 4.6 MT of CO₂e per service population (SP).

Land use development projects include residential, commercial, industrial, and public land use facilities. Direct sources of emissions may include on-site combustion of energy, such as natural gas used for heating and cooking, emissions from industrial processes (not applicable for most land use development projects), and fuel combustion from mobile sources. Indirect emissions are emissions produced off-site from energy production, water conveyance due to a project’s energy use and water consumption, and non-biogenic emissions from waste disposal.

31 BAAQMD’s CEQA Guidelines were reposted without the screening and significance thresholds tables in 2012 after the March 5, 2012, trial court ruling in California Building Industry Association v. Bay Area Air Quality Management District (Superior Court Case No. RG10548693). However, on August 13, 2013, the Court of Appeals reversed the trial court ruling and found that promulgation of thresholds of significance by a public agency is not a “project” subject to CEQA review. However, the California Supreme Court recently granted limited review of the case, so BAAQMD has not reinstated its previously adopted thresholds. Although BAAQMD is still not recommending its original thresholds, the thresholds are supported by appropriate studies and analysis (see http://www.baaqmd.gov/Divisions/Planning-and-Research/CEQA-GUIDELINES/Tools-and-Methodology.aspx). Accordingly, pursuant to its discretion under State CEQA Guidelines section 15064(b) (“lead agencies may exercise their discretion on what criteria to use”) and the recent holding in Citizens for Responsible Equitable Environmental Development v. City of Chula Vista (2011) 197 Cal.App.4th 327, 335-336 (“The determination of whether a project may have a significant effect on the environment calls for careful judgment on the part of the public agency involved, based to the extent possible on scientific and factual data.”), the City has decided to apply the BAAQMD CEQA thresholds to the Project.

32 CEQA Guidelines Section 15185.5, Tiering and Streamlining the Analysis of Greenhouse Gas Emissions, states that at a minimum, a plan for the reduction of GHG emissions would need to include: “1) An inventory of GHG emissions from both existing and projected over a specified time period; 2) A target level, based on substantial evidence, below which the contribution to GHG emissions from activities covered by the plan would not be cumulatively considerable; 3) To identify and analyze the GHG emissions resulting from specific actions or categories within the geographic area; 4) To specify measures or a group of measures, including performance standards, that substantial evidence demonstrates, if implemented on a project-by-project basis, would collectively achieve the specified emissions level; and 5) Be adopted in a public process following environmental review.”
Biogenic CO₂ emissions are not included in the quantification of a project's GHG emissions, because biogenic
CO₂ is derived from living biomass (e.g., organic matter present in wood, paper, vegetable oils, animal fat, food,
animal, and yard waste) as opposed to fossil fuels. Although GHG emissions from waste generation are included in
the GHG inventory for the proposed Project, the efficiency threshold of 4.6 MTCO₂e per service population
identified above does not include the waste sector and therefore are not considered in the evaluation.

BAAQMD does not have thresholds of significance for construction-related GHG emissions, but requires
quantification and disclosure of construction-related GHG emissions. However, GHG emissions from
construction activities are short term and therefore not assumed to significantly contribute to cumulative GHG
emissions impacts of the proposed Project.

4.7.3 IMPACT DISCUSSION

4.7.3.1 METHODOLOGY

GHG emissions were calculated using the California Emissions Estimator Model (CalEEMod), Version 2013.2.2.
Transportation emissions are based on trip generation and VMT provided by Fehr & Peers. Construction
emissions are based on the construction schedule, preliminary list of construction equipment, demolition volumes,
and haul volumes provided by the applicant.

This section discusses the GHG emissions impacts of the proposed Project. This discussion is organized by and
responds to each of the potential impacts identified in the Standards of Significance.

<table>
<thead>
<tr>
<th>GHG-1</th>
<th>The Project would not generate GHG emissions, either directly or indirectly, that would have a significant impact on the environment.</th>
</tr>
</thead>
</table>

A project does not generate enough GHG emissions on its own to influence global climate change; therefore, the
GHG chapter measures a project's contribution to the cumulative environmental impact. The development
contemplated by the proposed Project would contribute to global climate change through direct emissions of
GHG from on-site area sources and vehicle trips generated by the project, and indirectly through off-site energy
production required for on-site activities, water use, and waste disposal. Annual GHG emissions were calculated
for construction and operation of the Project. BAAQMD does not have thresholds of significance for
construction-related GHG emissions. GHG emissions from construction activities are short term and therefore
not assumed to significantly contribute to cumulative GHG emissions impacts of the proposed Project.
Construction emissions (total and amortized over a 30-year duration) are provided for informational purposes. The
total and net increases in GHG emissions associated with the Project are shown in Table 4.7-4.

As shown in this table, the net increase GHG emissions generated by the proposed Project would not exceed the
bright-line significance criteria of 1,100 MTCO₂e. Additionally, GHG emissions associated with operation of the
proposed Project were compared to the efficiency metric of 4.6 MTCO₂e/SP/yr. The proposed Project would
generate 2.1 MTCO$_2$/SP/yr and would not exceed the efficiency criteria. Consequently, GHG emissions impacts would be less than significant.

Significance Without Mitigation: Less than significant.

TABLE 4.7-4 PROJECT GREENHOUSE GAS EMISSIONS INVENTORY

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Existing (MTCO$_2$/Year)</th>
<th>Project (MTCO$_2$/Year)</th>
<th>Change in Emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Construction</td>
<td>NA</td>
<td>1,561</td>
<td>1,561</td>
</tr>
<tr>
<td>30-Year Amortized Construction</td>
<td>NA</td>
<td>52</td>
<td>52</td>
</tr>
<tr>
<td>Area Sources</td>
<td><1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Energy Use</td>
<td>44</td>
<td>415</td>
<td>371</td>
</tr>
<tr>
<td>Mobile Sources</td>
<td>75</td>
<td>361</td>
<td>286</td>
</tr>
<tr>
<td>Waste Generation</td>
<td>6</td>
<td>37</td>
<td>32</td>
</tr>
<tr>
<td>Water/Wastewater</td>
<td>4</td>
<td>27</td>
<td>24</td>
</tr>
<tr>
<td>Total</td>
<td>129</td>
<td>843</td>
<td>714</td>
</tr>
<tr>
<td>Total without Waste Generationa</td>
<td>124</td>
<td>806</td>
<td>683</td>
</tr>
<tr>
<td>MTCO$_2$/Service Population (SP)b</td>
<td>2.9</td>
<td>2.1</td>
<td>—</td>
</tr>
<tr>
<td>Threshold</td>
<td>NA</td>
<td>4.6</td>
<td>1,100</td>
</tr>
<tr>
<td>Exceeds Threshold</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

a Waste emissions are not included in the per capita emissions computation. BAAQMD did not include solid waste emissions when developing the per capita significance thresholds. However, if these emissions are included in the analysis for the existing, existing emissions would be 130 MTCO$_2$/yr and per capita emissions would be 3.0 MTCO$_2$/SP/yr; for the Project, Project emissions would be 843 MTCO$_2$/yr and per capita emissions would be 2.2 MTCO$_2$/SP/yr.

b Service population (SP) is based on 43 residents (existing) and 381 residents (Project).

Source: CalEEMod 2013.2.2. Trip generation and VMT based on data provided by Fehr & Peers.
CARB’s Scoping Plan

In accordance with AB 32, CARB developed the Scoping Plan to outline the State’s strategy to achieve 1990 level emissions by year 2020. To estimate the reductions necessary, CARB projected statewide 2020 BAU GHG emissions (i.e., GHG emissions in the absence of statewide emission reduction measures). CARB identified that the State as a whole would be required to reduce GHG emissions by 28.5 percent from year 2020 BAU to achieve the targets of AB 32. The revised BAU 2020 forecast shows that the State would have to reduce GHG emissions by 21.6 percent from BAU without Pavley and the 33 percent RPS or 15.7 percent from the adjusted baseline (i.e., with Pavley and 33 percent RPS).

Statewide strategies to reduce GHG emissions include the Low Carbon Fuel Standard, California Appliance Energy Efficiency regulations; California Building Standards (i.e., CALGreen and the 2008 Building and Energy Efficiency Standards); California Renewable Energy Portfolio standard (33 percent RPS); changes in the corporate average fuel economy standards (e.g., Pavley I and Pavley II); and other measures that would ensure the State is on target to achieve the GHG emissions reduction goals of AB 32. Statewide GHG emissions reduction measures that are being implemented over the next seven years would reduce the Project's GHG emissions.

New structures would meet the 2013 Building and Energy Efficiency Standards, which become effective January 1, 2014. The 2013 Standards are 25 percent more energy efficient than the 2008 standards for residential buildings while the 2008 standards were 15 percent more energy efficient than the 2005 Standards. The new buildings would also be constructed in conformance with CALGreen, which requires high-efficiency water fixtures for indoor plumbing and water efficient irrigation systems. The proposed Project would not conflict with statewide programs adopted for the purpose of reducing GHG emissions. Impacts would be less than significant.

MTC’s Plan Bay Area

To achieve MTC’s sustainable vision for the Bay Area, the Plan Bay Area land use concept plan for the region concentrates the majority of new population and employment growth within the region in PDAs. PDAs are transit-oriented, infill development opportunity areas within existing communities. Overall, well over two-thirds of all regional growth by 2040 is allocated within PDAs. PDAs are expected to accommodate 80 percent (or over 525,570 units) of new housing and 66 percent (or 744,230) of new jobs. Consequently, an overarching goal of the regional plan is to concentrate development in areas where there are existing services and infrastructure rather than allocate new growth in outlying areas where substantial transportation investments would be necessary to achieve the per capita passenger vehicle VMT and associated GHG emissions reductions.

35 Metropolitan Transportation Commission (MTC) and Association of Bay Area Governments (ABAG), 2013. Plan Bay Area, Strategy for a Sustainable Region.
The Project Site is within the Walnut Creek West Downtown PDA. The Project would be consistent with the overall goals of the MTC Plan Bay Area because it would increase land use intensity proximate to major transportation infrastructures, including the BART station, within this PDA. Existing pedestrian facilities are available on both sides of Lacassie Avenue, Ygnacio Valley Road, and North California Boulevard. However, there is a gap in the sidewalk fronting the Project on Lacassie Avenue. Crosswalks are provided on all four approaches of the intersections adjacent the Project site, with the exception of the Ygnacio Valley Road/Oakland Boulevard intersection, which has crosswalks on three legs of the intersection (except the westbound leg). The Walnut Creek BART Station is located within walking distance of the Project site and is accessible by walking or biking from the Project site. To facilitate use of alternative transportation, the Project would improve pedestrian/bike access by constructing a 10-foot sidewalk along the Lacassie frontage. As identified in the Traffic Impact Analysis prepared for the Project, use of alternative modes of transportation would reduce the trip generation of the Project. Therefore, the proposed Project is consistent with land use concept plan for the City of Walnut Creek identified in the Plan Bay Area to reduce region-wide VMT. Therefore, impacts would be less than significant.

Local Greenhouse Gas Reduction Plans

The City of Walnut Creek prepared a CAP to reduce community-wide and government GHG emissions. The measures identified in the City's CAP represent the City's actions to achieve the GHG reduction targets of AB 32 and the long-term goals of Executive Order S-03-05. A consistency analysis of the Project to the applicable community-wide actions in the City's CAP is shown in Table 4.7-5. As identified in the table, the proposed Project is consistent with the City's CAP and therefore, impacts are less than significant.

The proposed Project would require incorporation of energy efficiency and alternative transportation design features in order to ensure that the Project would not conflict with plans adopted for the purpose of reducing GHG emissions.

Significance Without Mitigation: Less than significant.

4.7.4 CUMULATIVE IMPACTS

| GHG-3 | The Project, in combination with past, present, and reasonably foreseeable projects, would not result in a significant cumulative impact with respect to GHG emissions. |

As described above, GHG emissions related to the proposed Project are not confined to a particular air basin but are dispersed worldwide. The global increase in GHG emissions that has occurred and will occur in the future is the result of the actions and choices of individuals, businesses, local governments, states, and nations. Therefore, the analysis in Section 4.7.3, Impact Discussion, addresses cumulative impacts. Impact GHG-1 identifies that the proposed Project would not represent a substantial increase in GHG emissions. These GHG emissions would not exceed the BAAQMD thresholds and impacts would be less than significant.
Existing federal, State, and local regulations and policies, including the City’s GHG Reduction Program, described throughout this chapter serve to reduce GHG emissions. Continued compliance with these regulations and implementation of existing regulations would reduce impacts to the maximum extent practicable.

Significance Without Mitigation: Less than significant.

TABLE 4.7-5

<table>
<thead>
<tr>
<th>Measure #</th>
<th>Applicable Measures</th>
<th>Consistency</th>
</tr>
</thead>
<tbody>
<tr>
<td>EU 3.1</td>
<td>Green Building Ordinance. Adopt CALGreen Tier 1 by 2014 to exceed Title 24 energy efficiency standards by 15%, and adopt CALGreen Tier 2 by 2017 to exceed Title 24 energy efficiency standards by 30%.</td>
<td>These standards are directed at the City of Walnut Creek to take action to adopt CALGreen standards by certain timeframes, but are not directed at individual projects. Tier 1 is currently voluntary in the City of Walnut Creek. The proposed Project would be constructed to achieve the 2013 Building and Energy Efficiency Standards. The 2013 Building and Energy Efficiency Standards are 25 percent more energy efficient for residential buildings than the 2008 standards, which are 15 percent more energy efficient than the 2005 standards. Because the proposed Project complies with current requirements, it is consistent with this measure.</td>
</tr>
<tr>
<td>EU 3.2</td>
<td>Urban Forestry. Increase tree cover throughout the city, with special emphasis on shading east and west walls of structures and parking lots.</td>
<td>The proposed Project requires a Site Development Permit and would necessitate review by the Design Review Commission for landscaping and irrigation. Review of the proposed Project by the Design Review Commission would ensure sufficient tree coverage, consistent with the Walnut Creek Climate Action Plan, is provided.</td>
</tr>
<tr>
<td>EU 4.1</td>
<td>Water Conservation. Work with EBMUD and CCWD to ensure that the Walnut Creek community achieves regional and statewide water reduction targets, including a 20% reduction as established by the State's 20X2020 plan.</td>
<td>This measure directs the City to work with EBMUD and CCWD to achieve reduction targets, so is not directly applicable to individual projects. However, it should be noted that the proposed Project is required to adhere to the current standards for indoor and outdoor plumbing and landscape water efficiency in accordance with California Building Code.</td>
</tr>
<tr>
<td>TLU 1.1</td>
<td>Low-Emission Vehicle Facilities. Facilitate the use of low-emission vehicles by coordinating with regional and state agencies for region-wide low-emission vehicle infrastructure improvements and networks.</td>
<td>Measure TLU 1.1 requires that the City of Walnut Creek coordinate with regional and state agencies to implement region-wide infrastructure improvements or networks. It is not intended to require action on a project level, so the proposed Project is consistent with this Measure.</td>
</tr>
<tr>
<td>TLU 1.2</td>
<td>Transportation Demand Management (TDM). Promote ridesharing and TDM programs with the CMA and 511.org to reduce use of traditional motor vehicles. Create a citywide car-sharing program to achieve further reductions in vehicle miles traveled.</td>
<td>The proposed Project is located adjacent to the BART parking structure, which is a potential key location to promote the citywide car sharing program identified in Measure TLU 1.2. The City is working with BART to carry out Measure TLU 1.2. By increasing residential density in close proximity to BART, the proposed Project will help to reduce use of traditional motor vehicles and is consistent with Measure TLU 1.2.</td>
</tr>
<tr>
<td>TLU 1.3</td>
<td>Traffic Calming. Install street design features such as landscaped medians and roundabouts in order to reduce vehicle speeds, volumes,</td>
<td>The measure description in the City of Walnut Creek’s CAP identifies the creation of incentives for developers that provide pedestrian and bicycle-friendly facilities. The project site is</td>
</tr>
</tbody>
</table>
TABLE 4.7-5
CONSISTENCY WITH CITY OF WALNUT CREEK’S COMMUNITY-WIDE GREENHOUSE GAS REDUCTION MEASURES

<table>
<thead>
<tr>
<th>Measure #</th>
<th>Applicable Measures</th>
<th>Consistency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>and idling.</td>
<td>designed to ensure internal connectivity between the residential, office, and retail areas to the BART transit station. In addition, the project site plans show pedestrian connectivity from the project site to off-site areas.</td>
</tr>
<tr>
<td>TLU 1.4</td>
<td>Anti-Idling Efficient Traffic Signal Timing. Reduce vehicle emissions through an effective traffic signal synchronization program.</td>
<td>MTC has recently completed traffic synchronization improvements in Walnut Creek through the Program for Arterial System Synchronization (PASS) project. Traffic synchronization was conducted in 2010 and 2011. Traffic signals in the City are synchronized through the City’s Intelligent Transportation System (ITS) and signals along Ygnacio Valley Road are operated with adaptive technology. The City Traffic Engineer would review project-related circulation and improvement plans to ensure local roadways continue to operate efficiently.</td>
</tr>
<tr>
<td>TLU 2.1</td>
<td>Smart Growth. Achieve higher-density, mixed-use, infill development through updated regulations and new incentives.</td>
<td>The proposed Project is an infill project that would increase density at the project site.</td>
</tr>
<tr>
<td>TLU 2.3</td>
<td>Affordable Housing. Support and expand affordable housing development through implementation of the City’s Housing Element and new programs.</td>
<td>The project applicant is required to comply with the City’s Inclusionary Housing Ordinance, which currently requires payment of an in-lieu for rental apartments or inclusion of affordable units on-site.</td>
</tr>
<tr>
<td>TLU 3.1</td>
<td>Bicycle Planning. Implement the City’s Bicycle Master Plan and incorporate bicycle lanes and routes into street systems, new subdivisions, and large developments.</td>
<td>To ensure consistency with Measure TLU 3.1, the project would require circulation plans to identify bicycle storage and connectivity to off-site bicycle lanes and routes to the satisfaction of the City of Walnut Creek. As previously stated the proposed Project will dedicate a 5 foot bike lane along Lacassie Avenue and the site is accessible via the existing bicycle routes on Ygnacio Valley Road and Oakland Boulevard and is in close proximity to existing bicycle lanes on North California Boulevard. Additionally, per the Walnut Creek Bicycle Plan, future bicycle lanes and routes are proposed to connect these existing routes and lanes to a wider network.</td>
</tr>
<tr>
<td>TLU 3.3</td>
<td>Bicycle Parking. Increase the number and locations of bicycle parking by requiring new development or redevelopment to provide adequate short- and long-term bicycle parking facilities.</td>
<td>The proposed Project would provide 22 bicycle parking stalls, as required by the City of Walnut Creek.</td>
</tr>
</tbody>
</table>

Source: Walnut Creek, City of. 2012, April. City of Walnut Creek Climate Action Plan.

4.7.5
SUMMARY OF SIGNIFICANT IMPACTS AND MITIGATION MEASURES

The proposed Project would not result in any significant Project-specific or cumulative impacts related to greenhouse gas emissions and, therefore, no mitigation measures are required.
4.8 LAND USE AND PLANNING

This chapter describes the regulatory framework and existing conditions related to land use in the vicinity of the Project site, and the potential land use and policy consistency impacts that could result from development of the Project.

4.8.1 ENVIRONMENTAL SETTING

4.8.1.1 REGULATORY FRAMEWORK

This section describes land use plans and policies relevant to the proposed Project.

Federal Laws and Regulations

There are no specific federal regulations applicable to the Project with regards to land use and planning.

State and Regional Laws and Regulations

Plan Bay Area, Strategy for a Sustainable Region

The Association of Bay Area Governments (ABAG) and the Metropolitan Transportation Commission (MTC), in coordination with the Bay Area Air Quality Management District (BAAQMD) and the Bay Conservation and Development Commission (BCDC), have been given the joint responsibility for creating the Sustainable Communities Strategy (SCS) for the nine-county Bay Area region. Each of the agencies involved in the SCS has a different role in regional governance. The ABAG primarily deals with regional land use, housing, environmental quality, and economic development issues, while MTC is tasked with regional transportation planning, coordinating, and financing. The BAAQMD is responsible for regional air pollution regulation. The BCDC is focused on preserving, enhancing, and ensuring the responsible use of the San Francisco Bay.

These agencies jointly created the SCS for the Bay Area, entitled the Plan Bay Area. The Final Plan Bay Area was adopted on July 18, 2013. The SCS is a land use strategy required to be included as part of the Bay Area’s 25-year Regional Transportation Plan (RTP). By federal law, the RTP must be internally consistent. Therefore, the more than $200 billion dollars of transportation investment typically included in the RTP must align with and support the SCS land use pattern. State law also requires that the updated eight-year regional housing need allocation (RHNA) prepared by ABAG is consistent with the SCS.

1 To read more about Plan Bay Area go to www.OneBayArea.Org.
2 It should be noted that the Bay Area Citizens filed a lawsuit on MTC’s and ABAG’s adoption of Plan Bay Area.
The SCS sets a development pattern for the region, which, when integrated with the transportation network and other transportation measures and policies, would reduce greenhouse gas (GHG) emissions from cars and light trucks, beyond the per capita reduction targets identified by California Air Resources Board (CARB).

As part of the implementing framework for Plan Bay Area, local governments have identified Priority Development Areas (PDAs) to focus growth. The PDAs are transit-oriented, infill development opportunity areas within existing communities. Overall, well over two-thirds of all regional growth by 2040 is allocated within the PDAs. The PDAs are expected to accommodate 80 percent (or over 525,570 units) of new housing and 66 percent (or 744,230) of new jobs. The Plan Bay Area includes the West Downtown PDA in Walnut Creek.

While the SCS does not directly govern land uses within Walnut Creek, there are a number of benefits available to the City from being consistent with this Plan, including: streamlining of CEQA pursuant to Senate Bill (SB) 375, the Sustainable Communities and Climate Protection Act of 2008, for applicable transit priority and residential or mixed-use projects, as well as high eligibility for transportation funding, provided that policies and land use patterns proposed in the General Plan align with the goals of the SCS.

The proposed Project’s consistency with the applicable policies related to GHG emissions, including consistency with Plan Bay Area, is discussed in Chapter 4.7, Greenhouse Gas Emissions, of this Draft EIR.

City of Walnut Creek Policies and Regulations

Walnut Creek General Plan 2025

The City Walnut Creek’s General Plan 2025, adopted in April 2006, serves as an effective guide for orderly growth, development, preservation, and conservation of open-space land and natural resources, as well as the efficient expenditure of public funds relating to the subjects addressed in the General Plan. The General Plan 2025 establishes specific land uses in order to express the desired development pattern in the city. The General Plan is a dynamic document that establishes policies to guide development and conservation in Walnut Creek through 2025. The seven State mandated General Plan elements (Land Use, Circulation, Conservation, Housing, Open Space, Noise, and Safety) were combined into five elements under the City’s General Plan as follows:

- Chapter 2 Quality of Life
- Chapter 3 Natural Environment and Public Spaces
- Chapter 4 Built Environment
- Chapter 5 Transportation
- Chapter 6 Safety and Noise

3 Metropolitan Transportation Commission (MTC) and Association of Bay Area Governments (ABAG). 2013, Final Plan Bay Area, Strategy for a Sustainable Region.

4 Metropolitan Transportation Commission (MTC) and Association of Bay Area Governments (ABAG), 2013, Bay Area Priority Development Areas, http://geocommons.com/maps/141979.
General Plan Land Uses

General Plan 2025 guides development in Walnut Creek over the course of its 20-year planning horizon. Chapter 4, Built Environment, of General Plan 2025 regulates land use within the city limit, establishing specific land use designations to express the desired pattern of development. Upon Project approval the Project site would be designated as Multifamily Special High (MFSH). According to the General Plan, this zoning district occurs only in the Core Area around Alma Avenue, where the Alma Avenue Specific Plan governs development. However, the primary intent of the MFSH land use designation is to expand the potential for downtown living. The allowable density of 50.1-100.0 dwelling units per net acre translates to a population of 79.7 to 159 persons per acre.5

Core Area Building Height Limits

In 1985, Walnut Creek voters approved Measure A, the Building Height Freeze Initiative. Measure A established height limits for new development throughout the city, freezing building height based on the applicable zoning ordinance on the date the initiative was approved. Measure A height limits are incorporated into General Plan 2025 as well as the City’s Planning and Zoning Ordinance. These regulations can only be modified with voter approval.6 In conformance with Measure A, General Plan 2025 establishes building height limits for the city’s Core Area, as shown in Figure 3-5 in Chapter 3, Project Description, of this Draft EIR. Building height limits for residential districts and areas outside the Core Area are established in the Zoning Ordinance. As shown in Figure 3-4, with approval of the proposed Project a maximum building height of 50 feet applies northeast corner of the Project site and a maximum building height not to exceed 89 feet applies to the rest of the Project site.

Goals and Policies

Table 4.8-1, below, enumerates the goals and policies pertaining to land use from the Walnut Creek General Plan 2025. The Project’s consistency with applicable noise-related policies outlined in General Plan 2025 Chapter 6, Safety and Noise, is discussed in Chapter 4.9, Noise, of this Draft EIR.

Walnut Creek 2009-2014 Housing Element

As described in Chapter 4.10, Population and Housing, of this Draft EIR, the City’s adopted Housing Element describes how Walnut Creek plans to meet the projected housing needs of all economic segments of the community and the City’s fair share allocation of regional housing needs. The Housing Element contains policies and programs that pertain to high density urban infill housing such as the proposed Project. The Housing Element also addresses the provision of housing for city residents, including affordable, mixed-use, and infill housing, and includes an analysis of whether Walnut Creek has provided adequate sites to meet its RHNA obligations. The following goals, policies, and actions are contained in the existing Walnut Creek Housing Element (Table 4.8-2).
<table>
<thead>
<tr>
<th>Goal/Policy Number</th>
<th>Goal/Policy Text</th>
<th>Consistency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1 Quality of Life</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goal 1</td>
<td>Protect and enhance the quality of life in the city’s residential neighborhoods.</td>
<td>Consistent. The proposed Project would provide high-density housing on a site that is located within the City’s West Downtown Priority Development Area (PDA) as designated by the Association of Bay Area Governments (ABAG) and the Metropolitan Transportation Commission (MTC) through the Bay Area’s Regional FOCUS program, which was intended to encourage new high-density development in close proximity to transit nodes that will help to reduce greenhouse gas emissions through a reduction in vehicle trips. The Project is also consistent with the goals of the 2011 Climate Action Plan, which encourages a conversion of vehicular trips to non-vehicular trips or transit trips (Transit and Land Use Goal 3).</td>
</tr>
<tr>
<td>Policy 1.4</td>
<td>Require that development is compatible with surrounding uses.</td>
<td>Consistent. The Project site is currently designated as Multi-Family Very High and zoned Multiple Family Residential. The Project is currently developed with a mix of one-story, single-family and duplex units and two-story, multi-family units. The proposed Project provides multi-family housing adjacent to residential and residential-serving land uses, and across from the Walnut Creek BART Station, which would promote regional public transportation. While the proposed Project would introduce a four-story building on the Project site, buildings of similar heights are located on adjacent parcels and in the general vicinity of the site.</td>
</tr>
<tr>
<td>Goal 2</td>
<td>Sustain the community’s quality of life with a vigorous and diverse economy.</td>
<td>Consistent: The proposed Project would provide the City with an additional 178 market-rate rental apartment units in the Core Area helping to create a well-situated residential community that provides housing options for current and future residents looking to reside in a transit friendly environment in Walnut Creek with transit connectivity to the larger Bay Area.</td>
</tr>
<tr>
<td>Policy 2.8</td>
<td>Maintain a range of high quality housing and affordable workforce housing options.</td>
<td>Consistent. The proposed Project would contribute to the provision of a range of high-quality housing in Walnut Creek by providing 178 market-rate rental apartment units comprised of 35 studio, 110 one-bedroom, and 33 two-bedroom apartment units ranging in size from 524 square feet (smallest studio unit) to 1,156 square feet (largest two-bedroom unit). The Project would be oriented around a central courtyard where outdoor seating, lounge chairs, and tables would be provided. On-site resident amenities, such as a fitness center, rooftop decks, an indoor lounge, and leasing office are also part of the Project.</td>
</tr>
<tr>
<td>Goal 8</td>
<td>Make Walnut Creek a community accessible to all.</td>
<td>Consistent. The proposed Project would bring high-density housing development in walking distance of the Walnut Creek BART station and as shown on Figure 3-7 in Chapter 3, Project Description, of this Draft EIR, pedestrian access to the Project would be available from one access point off of Ygnacio Valley Road, at two locations along the eastern perimeter and at two access points off of Lacassie Avenue. The Project includes a 10-foot minimum sidewalk along the Project’s frontages.</td>
</tr>
</tbody>
</table>
Table 4.8-1 Goals and Policies of the Walnut Creek General Plan 2025

<table>
<thead>
<tr>
<th>Goal/Policy Number</th>
<th>Goal/Policy Text</th>
<th>Consistency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Project would include a total of 7 parking stalls that meet the Americans with Disability Act (ADA) standards. The Project would also provide 24 bicycle parking stalls.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Consistent: The Project does not increase or decrease available open space lands in the city. However, as described in Chapter 3, Project Description, of this Draft EIR and shown on Figure 3-15, 20 percent of the development site would be landscaped. A total of 53 trees, including street trees, would be planted throughout the site in addition to shrubs, ferns, grasses, and other groundcover according to the City’s Master Street Planting Plan List.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Consistent: The Project incorporates a number of features meant to conserve water used for irrigation on-site. Water conserving features include an automatic “smart” irrigation controller with rain-sensor, low precipitation/low angle irrigation spray heads, low volume drip tubing installed below mulch, low water consuming plants, soil moisture retention techniques, and mulching to reduce evapotranspiration from the root zone. As shown on Figure 3-18, in Chapter 3, Project Description, of this Draft EIR, plants would be grouped with similar water, climatic and soil requirements to conserve water and create a drought responsive landscape. The proposed landscaping includes specific hydrozones that consist of moderate to low water consuming plants with consideration given to the northern, southern, eastern and western exposures to conserve water.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Consistent. The proposed Project is located across from the Walnut Creek BART station that would encourage residents of the proposed Project to use public transportation to commute and travel around the region. Also, the proposed Project is located in the downtown Core Area, where residential-serving retail stores and various offices are within walking distance. Both public transportation and other land uses within walking distance from the proposed Project would help to reduce the increase in traffic congestion.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Consistent. The proposed Project is located where both the General Plan and Zoning allow higher density residential development. Also, the proposed Project would rezone the Project site to a Planned Development (PD) zoning district, which allows more flexibility on development standards than the current zoning district, Multiple-Family Residential 1,000 (M-1), along with higher density.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Consistent. The proposed Project is compatible with its surroundings due to its adherence to development standards and design guidelines. The proposed Project is located in the downtown Core Area, which encourages higher density development around the Walnut Creek BART</td>
<td></td>
</tr>
</tbody>
</table>
Table 4.8-1 Goals and Policies of the Walnut Creek General Plan 2025

<table>
<thead>
<tr>
<th>Goal/Policy Number</th>
<th>Goal/Policy Text</th>
<th>Consistency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy 5.1</td>
<td>Require infill development to be compatible with adjacent and nearby uses.</td>
<td>Consistent. The proposed Project provides higher density residential development, which is surrounded by other multi-family residential buildings as well as residential-serving retail stores, restaurants, offices, and a public transportation station.</td>
</tr>
<tr>
<td>Policy 5.3</td>
<td>Require that all new parcels have permanent access to a public street.</td>
<td>Consistent. Although there is no plan to subdivide or merge the current parcels, the proposed Project provides multiple pedestrian access points from all surrounding streets and vehicular access from Lacassie Avenue to the proposed Project’s garage. Also see Quality of Life Goal 8 consistency discussion.</td>
</tr>
<tr>
<td>Goal 6</td>
<td>Maintain and enhance Walnut Creek’s thriving Core Area, while keeping the Pedestrian Retail District lively and walkable.</td>
<td>Consistent. The proposed Project is located in the downtown Core Area, which currently has retail, offices, and the Walnut Creek BART Station in walking distance of the Project site. By adding the proposed Project in the downtown Core Area, it would add more residents on the street, making the downtown Core Area a more thriving Pedestrian Retail District.</td>
</tr>
<tr>
<td>Goal 8</td>
<td>Allow development consistent with the density ranges of the General Plan 2025 land use map.</td>
<td>Consistent. The proposed Project proposes to amend its General Plan designation to Multiple Family Special High (MFSH), which allows 50.1-100 units per net acre, which is equivalent to 79.7 to 159 persons per acre. Since the proposed Project would introduce 100 units per net acre, the proposed Project would be consistent with the density ranges of the General Plan 2025 land use map upon the project approval.</td>
</tr>
<tr>
<td>Policy 8.1</td>
<td>Require that residential projects be developed within the established minimum and maximum density ranges.</td>
<td>Consistent. See Built Environment Goal 8 consistency discussion.</td>
</tr>
<tr>
<td>Goal 10</td>
<td>Coordinate the location, intensity, and mix of land uses with transportation resources.</td>
<td>Consistent. The proposed Project is located across from the Walnut Creek BART Station, which is also surrounded by commercial development and mixed-residential development. The high density residential development, along with residential-serving commercial nearby, supports the regional transportation resource available.</td>
</tr>
<tr>
<td>Policy 10.1</td>
<td>Support the development of medium and high-density office, residential, and local service retail near and around the Walnut Creek and Pleasant Hill BART Stations.</td>
<td>Consistent. As described in Chapter 3, Project Description, of this Draft EIR, the proposed Project provides 178 new residential units across from the Walnut Creek BART Station, which would support surrounding uses, including residential- and local-serving retail, mixed-use residential and high-density offices.</td>
</tr>
</tbody>
</table>
Table 4.8-1 Goals and Policies of the Walnut Creek General Plan 2025

<table>
<thead>
<tr>
<th>Goal/Policy Number</th>
<th>Goal/Policy Text</th>
<th>Consistency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal 11</td>
<td>Create a balanced, safe, and efficient regional and subregional transportation system.</td>
<td>Consistent. The proposed Project would provide high-density housing on a site that is located within the City’s West Downtown Priority Development Area (PDA) as designated by the Association of Bay Area Governments (ABAG) and the Metropolitan Transportation Commission (MTC) through the Bay Area’s Regional FOCUS program, which was intended to encourage high-density new development in close proximity to transit nodes. As shown on Figure 3-7 in Chapter 3, Project Description, of this Draft EIR, pedestrian access to the Project would be available from one access point off of Ygnacio Valley Road, at two locations along the eastern perimeter and at two access points off of Lacassie Avenue. The Project includes a 10-foot minimum sidewalk along the Project’s frontages in compliance with Walnut Creek General Plan 2025 Core Area sidewalk requirements. Furthermore, while the Project does not propose any new bicycle lanes or routes, as previously stated, the site is accessible via the existing bicycle routes on Ygnacio Valley Road and Oakland Boulevard and is in close proximity to existing bicycle lanes on North California Boulevard. Additionally, per the Walnut Creek Bicycle Plan, future bicycle lanes and routes are proposed to connect these existing routes and lanes to a wider network.</td>
</tr>
<tr>
<td>Policy 11.3</td>
<td>Require that new development pay its share of costs associated with growth.</td>
<td>Consistent. As discussed in the Initial Study (Appendix A of this Draft EIR) development of the proposed Project would not exceed the level of population or housing foreseen in City or regional planning efforts. Furthermore, as shown in Chapter 4.12, Transportation and Traffic, of this Draft EIR, the Project would not result in any significant impacts warranting the payment of additional fees beyond the required permitting fees associate with development of this nature in Walnut Creek.</td>
</tr>
<tr>
<td>Goal 12</td>
<td>Make more efficient use of the regional and subregional transportation system.</td>
<td>Consistent. The proposed Project would provide high-density housing development across from the Walnut Creek BART Station, which would promote regional public transportation.</td>
</tr>
<tr>
<td>Policy 12.2</td>
<td>Support infill and redevelopment in existing urban areas.</td>
<td>Consistent. The proposed Project would provide high-density housing on an underutilized site located across from the Walnut Creek BART Station and residential serving land uses. See Quality of Life Goal 1 consistency discussion.</td>
</tr>
<tr>
<td>Goal 19</td>
<td>Enhance the urban design quality of the Core Area and its subareas.</td>
<td>Consistent. The Project would provide high-density housing on an underutilized site located in the Core Area. The Project would provide a central courtyard with outdoor amenities, a fitness center, rooftop decks, and an indoor lounge. The Project would include landscaping and all exterior surface and above ground mounted fixtures will be sympathetic and complementary to the architectural theme.</td>
</tr>
<tr>
<td>Policy 19.2</td>
<td>Improve directional signage for pedestrians and vehicles in the Core Area.</td>
<td>Consistent. As described in Chapter 3, Project Description, of this Draft EIR, the Project would improve pedestrian movement with 10-foot minimum sidewalk along the Project’s frontages that would better connect to adjacent land uses, including access to the Walnut Creek BART.</td>
</tr>
</tbody>
</table>
TABLE 4.8-1 GOALS AND POLICIES OF THE WALNUT CREEK GENERAL PLAN 2025

<table>
<thead>
<tr>
<th>Goal/Policy Number</th>
<th>Goal/Policy Text</th>
<th>Consistency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Station. While the Project does not propose any new bicycle lanes or routes, as previously stated the site is accessible via the existing bicycle routes on Ygnacio Valley Road and Oakland Boulevard and is in close proximity to existing bicycle lanes on North California Boulevard. Additionally, per the Walnut Creek Bicycle Plan, future bicycle lanes and routes are proposed to connect these existing routes and lanes to a wider network.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chapter 5 Transportation</td>
<td></td>
</tr>
<tr>
<td>Goal 3</td>
<td>Maintain a transportation network that provides mobility for all ages and abilities and for all areas of the community.</td>
<td>Consistent. See Built Environment Goal 11.</td>
</tr>
<tr>
<td></td>
<td>Policy 3.1 Maintain the level of service standards for roadways shown in Figure 2 of the Walnut Creek General Plan for the City’s transportation network. Note: Figure 2 refers to the Walnut Creek Roadway Level of Service Standards.</td>
<td>Consistent. As shown in Chapter 4.12, Transportation and Traffic, the proposed Project would not exceed any level of service standards for the City’s transportation network.</td>
</tr>
<tr>
<td>Goal 6</td>
<td>Provide a safe and attractive walking environment accessible to all.</td>
<td>Consistent. As shown on Figure 3-7 in Chapter 3, Project Description, and previously discussed in this chapter of this Draft EIR, pedestrian access to the Project would be available from one access point off of Ygnacio Valley Road, at two locations along the eastern perimeter and at two access points off of Lacassie Avenue. The Project includes a 10 foot minimum sidewalk along the Project’s frontages in compliance with Walnut Creek General Plan 2025 Core Area sidewalk requirements.</td>
</tr>
<tr>
<td>Goal 7</td>
<td>Increase transit ridership and service to employment, schools, shopping, and recreation.</td>
<td>Consistent. See Built Environment Goal 12 consistency discussion.</td>
</tr>
<tr>
<td>Policy 6.1</td>
<td>Require full-frontage curb and sidewalk improvements in all commercial areas.</td>
<td>Consistent. See Transportation Goal 6 consistency discussion.</td>
</tr>
<tr>
<td>Policy 6.2</td>
<td>Facilitate use of public sidewalks and walkways throughout the city.</td>
<td>Consistent. See Transportation Goal 6 consistency discussion.</td>
</tr>
<tr>
<td>Policy 6.4</td>
<td>Facilitate use of public sidewalks and walkways throughout the city.</td>
<td>Consistent. See Transportation Goal 6 consistency discussion.</td>
</tr>
<tr>
<td>Goal 7</td>
<td>Link high-density residential developments, schools, employment</td>
<td>Consistent. See Built Environment Goal 12 consistency discussion.</td>
</tr>
</tbody>
</table>
TABLE 4.8-1 GOALS AND POLICIES OF THE WALNUT CREEK GENERAL PLAN 2025

<table>
<thead>
<tr>
<th>Goal/Policy</th>
<th>Goal/Policy Text</th>
<th>Consistency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal 8</td>
<td>Serve as a model for other cities by providing a comprehensive TDM program that strives to decrease the use of the automobile and reduce peak-period traffic congestion.</td>
<td>Consistent. See Built Environment Goal 12 consistency discussion.</td>
</tr>
<tr>
<td>Policy 8.5</td>
<td>Link high-density residential developments, employment centers, and shopping areas via transit, bikeways, and walkways.</td>
<td>Consistent. See Built Environment Goal 12 and Transportation Goal 6 consistency discussion.</td>
</tr>
</tbody>
</table>

Source: Walnut Creek General Plan 2025.

TABLE 4.8-2 GOALS AND POLICIES OF THE WALNUT CREEK 2009–2014 HOUSING ELEMENT

<table>
<thead>
<tr>
<th>Goal/Policy</th>
<th>Goal/Policy Text</th>
<th>Consistency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal 1</td>
<td>To promote the availability of housing types for all economic segments of the community consistent with the infrastructure and service capacities of the City.</td>
<td>Consistent. The proposed Project has different types of housing units to accommodate all economic segments of the community. The proposed Project provides 178 market-rate rental apartment units comprised of 35 studio, 110 one-bedroom, and 33 two-bedroom apartment units.</td>
</tr>
<tr>
<td>Policy 1</td>
<td>Encourage a mix of land uses and residential densities in the downtown Core Area to increase the supply of housing.</td>
<td>Consistent. The proposed Project is a residential development; therefore, the proposed Project increases the supply of housing in the downtown Core Area. The proposed project is located near residential-serving retail, regional public transit station, and office development in walking distance, contributing to a mix of land uses.</td>
</tr>
<tr>
<td>Policy 3</td>
<td>Encourage housing and commercial mixed-use development in selected locations that enhances pedestrian access and reduces traffic, particularly in the Core Area, and near public transit.</td>
<td>Consistent. The proposed Project only includes residential units, but it is located across from the public transit hub, the Walnut Creek BART station. Residential-serving retail stores and office development are within walking distance of the proposed Project serving to increase pedestrian access and reduce vehicular traffic.</td>
</tr>
<tr>
<td>Goal 3</td>
<td>Strive to meet Walnut Creek's regional housing needs.</td>
<td>Consistent. The proposed Project would help to meet Walnut Creek’s regional housing needs by providing additional 178 residential units.</td>
</tr>
<tr>
<td>Policy 20</td>
<td>Strive to meet Walnut Creek's share of regional housing needs.</td>
<td>Consistent. The proposed Project would help to meet Walnut Creek’s share of regional housing needs, which assigned the City to provide an additional 1,958 units by 2014, by providing an additional 178 residential units.</td>
</tr>
</tbody>
</table>

Zoning Ordinance

Contained in Title 10, Chapter 2 of the Walnut Creek Municipal Code, the City’s Zoning Ordinance implements the land use goals and policies established in General Plan 2025. The Zoning Ordinance identifies specific zoning districts within the city and describes the development standards, which apply to each district.

Upon approval the Project site would be zoned Planned Development (PD). The purpose of the PD zoning district is to allow diversification in the relationship of various buildings, land uses, structures, and open spaces in order to be relieved from the rigid standards of conventional zoning. Development in the PD district is required to comply with the regulations and provisions of the General Plan land use designation, which, as discussed above, is MFSH.

The proposed Project is located in the BART proximate area, which is defined as any portion of a parcel that is within 1/2 mile from the closest point of the Walnut Creek or Pleasant Hill BART station property. Within the BART proximate area, multi-family residential development has slightly reduced off-street parking requirements than what the underlying zoning district would allow. This is discussed further in Chapter 4.12, Transportation and Traffic, of this Draft EIR.

The Project site is, however, also covered by Overlay Zone 3 (O-3), which would supersede the requirements of the underlying zone. The primary purpose of the O-3 zoning district is to address the issue of adequate and safe driveway accesses on Ygnacio Valley Road and coordinate location and interconnection of future driveways in the planning area upon approval of a Conditional Use Permit. The proposed Project would eliminate 3 driveways on Ygnacio Valley Road. All egress and ingress is from Lacassie Avenue.

Tree Preservation Ordinance

The preservation of trees on private property, addressed in Chapter 8, Preservation of Trees on Private Property, of Title 3, Public Safety, of the Walnut Creek Municipal Code, known as the Tree Preservation Ordinance, requires a tree removal permit for removal of certain trees. Trees protected under this ordinance are defined in Sections 3-8.02(h) and (j), as the following:

- Any live woody plant having a single perennial stem of 28 inches or more in circumference measured 4.5 feet above the natural grade;
- Any multi-stemmed perennial plant having an aggregate circumference of 40 inches or more measured 4.5 feet above the natural grade;
- Any multi-stemmed plant having one stem of 28 inches or more in circumference.

Additionally, removal of any Highly Protected Tree also requires a tree removal permit. Highly Protected Trees include the following native tree species that meet the size criteria set forth above: valley oak (Quercus lobata), blue oak (Q. douglasi), coast live oak (Q. agrifolia), California black oak (Q. kelloggii), canyon live oak (Q. chrysolepis), interior live oak (Q. wislizenii var. wislizenii), madrone (Arbutus menziesii), California buckeye (Aesculus californica), California black walnut (Juglans nigra), and grey pine (Pinus sabiniana).

7 Walnut Creek Ordinance 1412, Overlay Zone 3, adopted January 16, 1979.
The removal and planting of street trees is regulated by Article 4, Street Trees, in Chapter 1, Encroachments, under Title 7, Public Works, of the Walnut Creek Municipal Code. A street tree is defined in Section 7-1.403 as any tree located within six feet from the back edge of the sidewalk, or if there is no sidewalk, within 11 feet from the curb line. The Municipal Code requires a permit for planting any street tree, and allows removal of street trees provided 1:1 replacement is provided. In addition, for projects requiring Design Review, section 7-1.405 provides “The Design Review Commission shall review the type, size and location of street trees for new development as part of the design review plan proposed for the project. The Design Review Commission approval shall constitute the planting permit required under Section 7-1.404. Planting or re-planting of street trees must adhere to planting standards in the City’s Master Street Tree Planting Plan.”

4.8.1.2 EXISTING CONDITIONS

Surrounding Land Uses and Context

The proposed Project site is located in the Core Area of Walnut Creek, within 0.25 miles of the Walnut Creek BART station and within 0.5 miles walking-distance to the Pedestrian Retail District. Adjacent land uses include single- and multi-family residential, office and institutional uses. Figure 3-3 in Chapter 3, Project Description, of this Draft EIR, shows the General Plan 2025 land use designations in the vicinity of the Project site. As shown, within the Core Area, surrounding land uses are generally commercial, office, institutional, and single- and multiple-family residential uses.

Ygnacio Valley Road runs along the northern edge of the Project site and Lacassie Avenue runs along the southern edge. The BART station is located across Ygnacio Valley Road to the north of the site, and the BART tracks run near to the western edge of the site. The I-580 freeway runs to the west of the site, beyond a grouping of commercial office buildings.

Existing Uses on the Project Site

The proposed Project site is located on a 1.82-acre parcel of land in the Core Area of Walnut Creek. The Project site is currently developed with 8 residential buildings with a total of 20 units, all of which are currently occupied. The site is generally flat with ornamental landscaping and a preliminary tree assessment shows that 34 trees with a trunk diameter of at least 9 inches at 4.5 feet above grade8 are located on the site.

Existing Trees

A Tree Report prepared by John Traverso (BMCA #0206-b.) is included as Appendix D of this Draft EIR. The proposed Project would remove the 34 existing trees on the site that qualify as “protected trees” under the City’s Tree Protection Ordinance, as well as 4 trees that qualify as a regulated Street Tree under the City’s Municipal code.

8 Projected Tree Inventory Map dated November 26, 2012, and the Addendum to Tree Inventory and Assessment for “The Landing at Walnut Creek,” May 22, 2013 prepared by John Traverso, BMCA #0206-b.
The removal of regulated trees on the site and Ygnacio Valley Road frontage would require permit authorization from the City and compliance with the City's Municipal Code. None of these trees would be preserved with development of the proposed Project, although the Project includes 54 replacement trees.

4.8.2 STANDARDS OF SIGNIFICANCE

An Initial Study was prepared for the proposed Project (see Appendix A of this Draft EIR). Based on the analysis contained in the Initial Study it was determined that development of the proposed Project would not result in significant environmental impacts per the following significance standards and therefore, is not discussed in this chapter.

- Physically divide an established community.
- Conflict with any applicable habitat conservation plan or natural community conservation plan.

Based on the Initial Study it was determined that the proposed Project would result in a significant land use impact if it would conflict with any applicable land use plan, policy or regulation of an agency with jurisdiction over the Project (including, but not limited to the general plan, specific plan, local coastal program, or zoning ordinance) adopted for the purpose of avoiding or mitigating an environmental effect.

4.8.3 IMPACT DISCUSSION

This section provides an analysis of the potential project and cumulative land use impacts that could occur as a result of the development of the proposed Project. This discussion is organized by and responds to the potential impacts identified in the Standards of Significance.

LU-1 The proposed Project would not conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the project (including, but not limited to the general plan, specific plan, local coastal program, or zoning ordinance) adopted for the purpose of avoiding or mitigating an environmental effect.

General Plan 2025

The General Plan Guidelines published by the State Office of Planning and Research defines consistency as follows; “An action, program, or project is consistent with the General Plan if, considering all its aspects, it will further the objectives and policies of the General Plan and not obstruct their attainment.” Therefore, the standard for analysis used in this Draft EIR is based on general agreement with the policy language and furtherance of the policy intent (as determined by a review of the policy context). A comparison of the Project’s characteristics with all applicable polices outlined in the General Plan 2025 as they relate to land use issues are presented in Tables 4.8-1 and 4.8-2; as shown, the Project is consistent with these policies.
Upon Project approval, the General Plan 2025 Land Use designation for the Project site would be Multiple Family Special High (MFSH), which allows 50.1-100.0 units per net acre, equivalent to 79.7 to 159 persons per acre. The proposed Project’s density of 100 dwelling units per acre (du/ac) would be allowed by the MFSH designation.

The General Plan Amendment for the proposed Project includes increased height limits on the Project site to a 60 feet maximum, which is still consistent with the Measure A height limit of 89 feet. The proposed Project’s highest point is 60 feet, which would be allowed with the revised Height Limit map.

Other than the designation and height limit changes, the development of multiple-family housing on the Project site as proposed is consistent with numerous General Plan 2025 goals and policies, as shown in Table 4.8-1. While the final determination of consistency will be made by the decision-makers, on balance, the proposed Project appears consistent with General Plan 2025 and so would result in a less-than-significant impact.

Walnut Creek 2009-2014 Housing Element

The City’s adopted Housing Element includes policies that pertain to high-density urban infill housing, including the proposed Project. The Housing Element also addresses the provision of housing for city residents, including affordable, mixed-use, and infill housing, and includes an analysis of whether Walnut Creek has provided adequate sites to meet its RHNA obligations.

The proposed Project is consistent with Policy 1 of the Housing Element because it would increase the supply of housing in the Core Area of Walnut Creek. Given the proposed 178 residential units would count towards fulfilling the City’s share of regional housing needs, the proposed Project is also consistent with Goal 3, Policy 20 and Program 20.1 of the Housing Element. As discussed in Chapter 4.10, Population and Housing, of this Draft EIR, the proposed Project will result in a net increase of housing units in the city.

Zoning Ordinance

Upon approval of the Project, the site would be zoned as Planned Development (PD). The PD zoning district allows more flexible development standards, including higher density, as long as the development complies with the General Plan land use designation. The PD zoning district helps to allow for infill development with higher density projects like the proposed Project. Since the proposed Project would be within the MFSH land use designation and PD zoning district, the proposed Project would be consistent with the zoning district regulations, and the impact would be less than significant.

The Project site is located at the eastern edge of the Core Area, within 0.25 miles of the Walnut Creek BART station. The Walnut Creek Zoning Ordinance allows for different parking standards from the base zoning district for projects in the Core Area. The proposed Project complies the Core Area parking standards by providing 223 vehicular parking stalls on-site, as well as seven parking stalls that meet the Americans with Disabilities Act (ADA) standards, and 24 bicycle-parking stalls.

Overall, upon approval of the City Council, the proposed Project would be consistent with the provisions of the Walnut Creek Zoning Ordinance and impacts would be less than significant.
Tree Preservation Ordinance

The City of Walnut Creek Tree Preservation Ordinance prohibits the removal of any tree without a Tree Removal Permit and provides special consideration to certain native “Highly Protected Trees.” The Ordinance applies to any tree (dead or alive, public or private) that measures 9 inches or larger in diameter or 28 inches or larger in circumference, when measured at 4.5 feet above natural grade. Highly Protected Trees include: valley oak, blue oak (Quercus douglasii), coast live oak (Q. agrifolia), California black oak (Q. kelloggii), canyon live oak (Q. chrysolepis), interior live oak (Q. wislizeni var. wislizeni), madrone (Arbutus menziesii), California buckeye (Aesculus californica), California black walnut (Juglans hindsii), and grey pine (Pinus sabina). The removal of a Highly Protected Tree can be authorized only if the burden to the applicant in preserving the tree would severely reduce the scale or feasibility of the development. The City Arborist evaluates tree removal requests, considering such issues as disease, danger of falling, species, proximity of existing structures, form, utility interference, health, sidewalk or driveway damage, vectors, public nuisance, and other trees on the site. The Tree Preservation Ordinance also sets forth procedures and evaluation criteria for consideration of Tree Removal Permits, and requires actions to preserve existing on-site trees during construction.

The site contains a number of existing landscape trees, many of which appear to qualify as regulated trees. Two Tree Inventory and Assessments were prepared for the Project site in November 2012 and in May 2013. Per the City standards outlined above, the 34 trees identified as being 9 inches or larger in diameter do not qualify as highly protected trees. Given all trees on site would be removed as part of Project development, mandatory compliance with the City’s Tree Preservation Ordinance and a Tree Removal Permit would ensure consistency with this ordinance.

Plan Bay Area

The Project site is within the Plan Bay Area’s West Downtown Priority Development Area (PDA). As part of the Bay Area’s regional FOCUS program, any projects within PDAs are encouraged to provide higher density new development in close proximity to transit nodes, like the Walnut Creek BART station, to reduce greenhouse gas emission through reduced vehicular trips. While the Plan Bay Area does not directly govern land uses within Walnut Creek, the Project would be consistent with this designation.

Significance Without Mitigation: Less than significant.

9 Projected Tree Inventory Map, dated November 26, 2012, and the Addendum to Tree Inventory & Assessment for “The Landing at Walnut Creek, dated May 22, 2013 prepared by John Traverso, BMCA #0206-b.
4.8.4 CUMULATIVE IMPACTS

LU-2 The proposed Project, in combination with past, present and reasonably foreseeable projects, would result in a less than significant cumulative impacts with respect to land use and planning.

This section analyzes potential impacts related to land use that could occur from a combination of the proposed Project with other past, present, and reasonably foreseeable projects in the surrounding area. The projects considered in this section are identified in Chapter 4.2, Cumulative Impact Analysis, of this Draft EIR. Cumulative impacts would occur if development associated with the proposed Project together with other cumulative projects would conflict with applicable land use plans, policies, or regulations.

Upon Project approval, the proposed Project would bring 178 residential units to the Walnut Creek’s downtown Core Area, constructed over a period of 20 months starting in April 2015. As discussed above, the proposed Project would not conflict with any applicable land use plans, policies, or regulations. Because the proposed Project would result in less-than-significant impacts to land use in the vicinity of the Project site and the proposed Project would be consistent with established County and City land use plans and policies, a less-than-significant impact would occur.

Significance Without Mitigation: Less than significant.

4.8.5 SUMMARY OF SIGNIFICANT IMPACTS AND MITIGATION MEASURES

The project would not result in any significant project-specific or cumulative impacts to land use and planning and therefore no mitigation measures are required.
4.9 NOISE

This section describes the potential effects of the proposed Project in relation to noise and vibration. Included in this chapter is background information on noise and vibration, a brief summary of the regulatory framework that pertains to the proposed Project, an evaluation of the significance of Project impacts including noise and land use compatibility, long-term noise level increases resulting from Project-generated traffic, temporary noise and vibration impacts during construction, and cumulative impacts. This chapter incorporates the findings of the noise analysis conducted by The Planning Center | DC&E. Calculations for noise and vibration impacts are included as Appendix F of this Draft EIR.

4.9.1 ENVIRONMENTAL SETTING

4.9.1.1 BACKGROUND

Noise Descriptors

Noise is most often defined as unwanted sound. Although sound can be easily measured, the perception of noise and the physical response to sound complicate the analysis of its impact on people. People judge the relative magnitude of sound sensation in subjective terms such as “noisiness” or “loudness.”

The following are brief definitions of terminology used in this section:

- **Sound.** A disturbance created by a vibrating object, which, when transmitted by pressure waves through a medium such as air, is capable of being detected by a receiving mechanism, such as the human ear or a microphone.

- **Noise.** Sound that is loud, unpleasant, unexpected, or otherwise undesirable.

- **Intrusive.** Noise which intrudes over and above the existing ambient noise at a given location. Relative intrusiveness depends on amplitude, duration, frequency, time of occurrence, and tonal or informational content, as well as the prevailing ambient noise level.

- **Decibel (dB).** A unit-less measure of sound on a logarithmic scale.

- **A-Weighted Decibel (dBA).** An overall frequency-weighted sound level in decibels that approximates the frequency response of the human ear.

- **Ambient Noise Level.** The composite of noise from all sources near and far. The normal or existing level of environmental noise at a given location.

- **Equivalent Continuous Noise Level (Leq).** The mean of the noise level (or energy) averaged over the measurement period.
\begin{itemize}
\item **Statistical Sound Level (L_n)**. The sound level that is exceeded “n” percent of time during a given sample period. For example, the L_{50} level is the statistical indicator of the time-varying noise signal that is exceeded 50 percent of the time (during each sampling period); that is, half of the sampling time, the changing noise levels are above this value and half of the time they are below it. This is called the “median sound level.” The L_{10} level, likewise, is the value that is exceeded 10 percent of the time (i.e. near the maximum) and this is often known as the “intrusive sound level.” The L_{90} is the sound level exceeded 90 percent of the time and is often considered the “effective background level” or “residual noise level.”

\item **Day-Night Sound Level (L_{dn} or DNL)**. The energy-average of the A-weighted sound levels occurring during a 24-hour period, with 10 dB added to the sound levels occurring during the period from 10:00 p.m. to 7:00 a.m.

\item **Community Noise Equivalent Level (CNEL)**. The energy-average of the A-weighted sound levels occurring during a 24-hour period, with 5 dB added to the levels occurring during the period from 7:00 p.m. to 10:00 p.m. and 10 dB added to the sound levels occurring during the period from 10:00 p.m. to 7:00 a.m. Note that for general community/environmental noise, CNEL and L_{dn} values rarely differ by more than 1 dB. As a matter of practice, L_{dn} and CNEL values are considered to be equivalent/interchangeable and are treated as such in this assessment.
\end{itemize}

Characteristics of Sounds

When an object vibrates, it radiates part of its energy as acoustical pressure in the form of a sound wave. Sound can be described in terms of amplitude (loudness), frequency (pitch), and duration (time). The human hearing system is not equally sensitive to sound at all frequencies. Therefore, to approximate the human, frequency-dependent response, the A-weighted filter system is used to adjust measured sound levels. The normal range of human hearing extends from approximately 0 dBA (the threshold of detection) to 140 dBA (the threshold of pain). Since most people do not routinely work with decibels or A-weighted sound levels, it is often difficult to appreciate what a given sound pressure level (SPL) number means. To help relate noise level values to common experience, Table 4.9-1 shows typical noise levels from noise sources.

Unlike linear units such as inches or pounds, decibels are measured on a logarithmic scale to better account for the large variations in pressure amplitude (the above range of human hearing, 0 to 140 dBA, represents a ratio in pressures of one hundred trillion to one). All noise levels in this study are relative to the industry-standard pressure reference value of 20 micropascals. Because of the physical characteristics of noise transmission and perception, the relative loudness of sound does not closely match the actual amounts of sound energy. Table 4.9-2 presents the subjective effect of changes in sound pressure levels.

Sound is generated from a source; the decibel level decreases as the distance from that source increases. Sound dissipates according to the inverse square law with increasing distance from the noise source. This phenomenon is known as spreading loss or distance attenuation.
<table>
<thead>
<tr>
<th>Common Outdoor Activities</th>
<th>Noise Level (dBA)</th>
<th>Common Indoor Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>110 Rock Band</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jet Flyover at 1,000 feet</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Gas Lawn Mower at 3 feet</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Diesel Truck at 50 feet, at 50 miles per hour</td>
<td>80</td>
<td>Garbage Disposal at 3 feet</td>
</tr>
<tr>
<td>Noisy Urban Area, Daytime</td>
<td>70</td>
<td>Vacuum Cleaner at 10 feet</td>
</tr>
<tr>
<td>Commercial Area</td>
<td>60</td>
<td>Normal speech at 3 feet</td>
</tr>
<tr>
<td>Heavy Traffic at 300 feet</td>
<td></td>
<td>Large Business Office</td>
</tr>
<tr>
<td>Quiet Urban Daytime</td>
<td>50</td>
<td>Dishwasher Next Room</td>
</tr>
<tr>
<td>Quiet Urban Nighttime</td>
<td>40</td>
<td>Theater, Large Conference Room (background)</td>
</tr>
<tr>
<td>Quiet Suburban Nighttime</td>
<td>30</td>
<td>Library</td>
</tr>
<tr>
<td>Quiet Rural Nighttime</td>
<td>20</td>
<td>Bedroom at Night, Concert Hall (background)</td>
</tr>
<tr>
<td>Very remote areas Nighttime</td>
<td>10</td>
<td>Broadcast/Recording Studio</td>
</tr>
<tr>
<td>Lowest Threshold of Human Hearing</td>
<td>0</td>
<td>Lowest Threshold of Human Hearing</td>
</tr>
</tbody>
</table>

Source: Bies and Hansen, 2009.
When sound is measured for distinct time intervals, the statistical distribution of the overall sound level during that period can be obtained. For example, L_{50} is the noise level that is exceeded 50 percent of the time. Similarly, the L_{02}, L_{08}, and L_{25} values are exceeded 2, 8, and 25 percent of the time or 1, 5, and 15 minutes per hour. Because sound levels can vary markedly over a short period of time, a method for describing either the average character of the sound or the statistical behavior of the variations must be utilized. Most commonly, environmental sounds are described in terms of an average level that has the same acoustical energy as the summation of all the time-varying events. This energy-average or energy-equivalent sound level (abbreviated as L_{eq}) is the most common parameter associated with community noise measurements. The L_{eq} metric is a single-number noise descriptor of the energy-average sound level over a given period of time (which should be specified). An hour is the most common period of time over which average sound is measured, but it can be measured over any duration. Other values typically noted during a noise survey are the L_{min} and L_{max}. These values are the minimum and maximum, respectively, root-mean-square (RMS) noise levels obtained over the stated measurement period.

Since sensitivity to noise increases during the evening and at night, when excessive noise can interfere with relaxation and/or the ability to sleep, 24-hour descriptors have been developed that incorporate artificial noise penalties added to quiet-time noise events. Because of this increased sensitivity to unwanted noise intrusion during the evening and nighttime hours, State law requires, for planning purposes, that this increased noise sensitivity be accounted for. The Day/ Night Average Sound Level, L_{dn}, is a measure of the cumulative noise exposure in a community, with a 10 dB addition to nocturnal (10:00 p.m. to 7:00 a.m.) noise levels. The Community Noise Equivalent Level (CNEL) is a similar 24-hour cumulative measure of noise, but it differs slightly from L_{dn} in that 5 dB is added to the levels occurring during the evening period from 7:00 p.m. to 10:00 p.m. (and, as with the L_{dn} metric, CNEL also has 10 dB added to the sound levels occurring during the period from 10:00 p.m. to 7:00 a.m.). For general community/environmental noise, CNEL and L_{dn} values rarely differ by more than 1 dB. As a matter of practice, L_{dn} and CNEL values are considered to be equivalent/interchangeable and are treated as such in this assessment.

Psychological and Physiological Effects of Noise

Physical damage to human hearing begins at prolonged exposure to noise levels higher than 85 dBA. Exposure to high noise levels affects the entire system; prolonged noise exposure in excess of 75 dBA increases body tensions, thereby affecting blood pressure and functions of the heart and nervous system. Extended periods of noise exposure above 90 dBA results in permanent cell damage, which is the main driver for employee hearing protection regulations in the workplace.

For community environments, the ambient or background noise problem is widespread and generally more concentrated in urban areas than in outlying, less-developed areas. Causes for annoyance include interference with speech, radio, television, and sleep and rest, as well as induced structural vibrations. The L_{dn} as a measure of noise
has been found to provide a valid correlation of noise level and the percentage of people annoyed. The threshold for annoyance from vehicle noise is about 55 dBA Ldn. At an Ldn of about 60 dBA, approximately 8 percent of the population is highly annoyed. When the Ldn increases to 70 dBA, the highly-annoyed proportion of the population increases to about 20 to 25 percent.¹ There is, therefore, an increase of about 2 percent per decibel of increased noise between an Ldn of 60 to 70 dBA. The thresholds for speech interference indoors are approximately 45 dBA for continuous noise and approximately 55 dBA for fluctuating noise. Outdoors, the thresholds are roughly 15 dBA higher. Steady noise above 35 dBA and fluctuating noise levels above roughly 45 dBA have been shown to affect sleep.²

Vibration Fundamentals

Vibration is an oscillatory motion through a solid medium in which the motion's amplitude can be described in terms of displacement, velocity, or acceleration. Vibration is normally associated with activities stemming from operations of railroads or vibration-intensive stationary sources, but can also be associated with construction equipment such as jackhammers, pile drivers, vibratory rollers, and hydraulic hammers. Vibration displacement is the distance that a point on a surface moves away from its original static position. The instantaneous speed that a point on a surface moves is the velocity, and the rate of change of the speed is the acceleration. Each of these descriptors can be used to correlate vibration to human response, building damage, and acceptable equipment vibration levels. During construction, the operation of construction equipment can cause groundborne vibration. During the operational phase of a project, receptors may be subject to levels of vibration that can cause annoyance due to noise generated from vibration of a structure or items within a structure. These types of vibration are best measured and described in terms of velocity and acceleration.

The three main types of waves associated with groundborne vibrations are surface or Rayleigh waves, compression or P-waves, and shear or S-waves.

- Surface or Rayleigh waves travel along the ground surface. They carry most of their energy along an expanding cylindrical wave front, similar to the ripples produced by throwing a rock into a lake. The particle motion is more or less perpendicular to the direction of propagation.
- Compression or P-waves are body waves that carry their energy along an expanding spherical wave front. The particle motion in these waves is longitudinal, in a push-pull motion. P-waves are analogous to airborne sound waves.
- Shear or S-waves are also body waves, carrying their energy along an expanding spherical wave front. Unlike P-waves, however, the particle motion is transverse, or perpendicular to the direction of propagation.

Vibration amplitudes are usually described in terms of either the peak particle velocity (PPV) or the RMS velocity. PPV is the maximum instantaneous peak of the vibration signal and RMS is the square root of the average of the

squared amplitude of the signal. PPV is more appropriate for evaluating potential building damage, whereas RMS is typically more suitable for evaluating human response.

The units for PPV and RMS velocity are normally inches per second (in/sec). Often, vibration is presented and discussed in dB units in order to compress the range of numbers required to describe the vibration. In this study, all PPV and RMS velocity levels are in inches/second (in/sec) and all vibration levels are in dB relative to one micro-inch per second (abbreviated as VdB). Typically, groundborne vibration generated by human activities attenuates rapidly with distance from the source of the vibration. Even the more persistent Rayleigh waves decrease relatively quickly as they move away from the source of the vibration. Man-made vibration problems are, therefore, usually confined to relatively short distances (500 to 600 feet or less) from the source.

Effects of Vibration

Table 4.9-3 displays human annoyance and the effects on buildings resulting from continuous vibration. As discussed previously, annoyance is a subjective measure and vibrations may be found to be annoying at much lower levels than those shown, depending on the level of activity or the sensitivity of the individual. To sensitive individuals, vibrations approaching the threshold of perception can be annoying. Persons exposed to elevated ambient vibration levels such as people in an urban environment may tolerate a higher vibration level.

Human response to ground vibration has been correlated best with the velocity of the ground. The velocity of the ground is expressed on the decibel scale. The reference velocity is 1×10^{-6} inch/second RMS, which equals 0 VdB, and 1 inch/second equals 120 VdB. The abbreviation “VdB” is used in this document for vibration decibels to reduce the potential for confusion with sound decibels. One of the problems with developing suitable criteria for groundborne vibration is the limited research into human response to vibration and, more importantly, human annoyance inside buildings. The U.S. Department of Transportation Federal Transit Administration (FTA) has developed rational vibration limits that can be used to evaluate human annoyance to groundborne vibration. These criteria are primarily based on experience with rapid transit and commuter rail systems, and are discussed in greater detail in the regulations section of this document.

Railroad and transit operations are potential sources of substantial ground vibration depending on distance, the type and the speed of trains, and the type of track. Trains generate substantial vibration due to their engines, steel wheels, heavy loads, and wheel-rail interactions.

Construction operations generally include a wide range of activities that can generate groundborne vibration, which varies in intensity depending on several factors. In general, blasting and demolition of structures, as well as pile driving and vibratory demolition/compaction equipment generate the highest vibrations. Because of the impulsive nature of such activities, the use of the peak particle velocity descriptor (PPV) has been routinely used to measure and assess groundborne vibration and almost exclusively to assess the potential of vibration to induce structural damage and the degree of annoyance for humans.
Vibratory compactors or rollers, pile drivers, and pavement breakers can generate perceptible amounts of vibration at up to 200 feet. Heavy trucks can also generate groundborne vibrations, which can vary, depending on vehicle type, weight, and pavement conditions. Potholes, pavement joints, discontinuities, differential settlement of pavement, etc., all increase the vibration levels from vehicles passing over a road surface. Construction vibration is normally of greater concern than vibration from normal traffic flows on streets and freeways with smooth pavement conditions.

“Architectural” damage can be classified as cosmetic only, such as minor cracking of building elements, while “structural” damage may threaten the integrity of a building. Safe vibration limits that can be applied to assess the potential for damaging a structure vary by researcher and there is no general consensus as to what amount of vibration may pose a threat for structural damage to a building. Construction-induced vibration that can be detrimental to the building is very rare and has only been observed in instances where the structure is in a high state of disrepair and the construction activity occurs immediately adjacent to the structure. Table 4.9-4 shows the criteria established by the FTA for the likelihood of structural damage due to vibration.

Noise- and Vibration-Sensitive Receptors

Certain land uses are particularly sensitive to noise and vibration, including residences, schools, places of worship, and open space/recreation areas where quiet environments are necessary for enjoyment, public health, and safety. These types of sensitive land uses can be found within the city. These uses are regarded as sensitive because they

are where citizens most frequently engage in activities which are likely to be disturbed by noise, such as reading, studying, sleeping, resting, or otherwise engaging in quiet or passive recreation. Commercial and industrial uses are not considered noise- and vibration-sensitive uses for the purposes of this analysis since noise- and vibration-sensitive activities are less likely to be undertaken in these areas, and because these uses themselves often generate noise in excess of what they receive from other uses.

Table 4.9-4 GROUNDBORNE VIBRATION CRITERIA: ARCHITECTURAL DAMAGE

<table>
<thead>
<tr>
<th>Building Category</th>
<th>PPV (in/sec)</th>
<th>L\textsubscript{r} (VdB)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Reinforced concrete, steel, or timber (no plaster)</td>
<td>0.5</td>
<td>102</td>
</tr>
<tr>
<td>II. Engineered concrete and masonry (no plaster)</td>
<td>0.3</td>
<td>98</td>
</tr>
<tr>
<td>III. Non-engineered timber and masonry buildings</td>
<td>0.2</td>
<td>94</td>
</tr>
<tr>
<td>IV. Buildings extremely susceptible to vibration damage</td>
<td>0.12</td>
<td>90</td>
</tr>
</tbody>
</table>

a RMS velocity calculated from vibration level (VdB) using the reference of one micro-inch/second.

4.9.1.2 REGULATORY FRAMEWORK

To limit population exposure to physically and/or psychologically damaging as well as intrusive noise levels, the federal government, the State of California, various county governments, and most municipalities in the state, have established standards and ordinances to control noise. This section describes the regulatory framework related to noise and vibration in the vicinity of the Project site.

State of California Noise Standards

California Building Code

The State of California’s noise insulation standards are codified in the California Code of Regulations, Title 24, Building Standards Administrative Code, Part 2, California Building Code. These noise standards are applied to new construction in California for the purpose of ensuring that the level of exterior noise transmitted to and received within the interior living spaces of buildings is compatible with their comfortable use. For new residential dwellings, hotels, motels, dormitories, and school classrooms, the acceptable interior noise limit for habitable rooms in new construction is 45 dBA CNEL or L\textsubscript{dn}. Title 24 requires acoustical studies for residential development in areas exposed to more than 60 dBA CNEL to demonstrate that the structure has been designed to limit interior noise in habitable rooms to acceptable noise levels. Where exterior noise levels are projected to exceed 60 dBA CNEL or L\textsubscript{dn} at the façade of a building, a report must be submitted with the building plans describing the noise control measures that have been incorporated into the design of the Project to meet the 45 dBA noise limit.
Walnut Creek Noise and Vibration Standards

Walnut Creek General Plan 2025

The Safety and Noise Element of the General Plan 2025 sets forth goals, policies, and actions relating to preventing the generation or reception of excessive noise. Goals, policies, and actions that would be applicable to the Project are shown in Table 4.9-5. The Safety and Noise Element also sets forth land use compatibility guidelines for noise-sensitive land uses and outdoor activity areas. Although the land use noise compatibility guidelines adopted by the City are similar to those provided the State of California General Plan Guidelines, the City has opted to make a variety of changes to better reflect local conditions and to provide for more “distinct” noise compatibility categories, as shown in Figure 4.9-1.

<table>
<thead>
<tr>
<th>Goal/Policy/Action Number</th>
<th>Goal/Policy/Action Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 6 Safety and Noise Element</td>
<td></td>
</tr>
<tr>
<td>Goal 8</td>
<td>Provide compatible noise environments for new development, redevelopment, and condominium conversions.</td>
</tr>
<tr>
<td>Policy 8.1</td>
<td>Apply the noise and land use compatibility table and standards to all residential, commercial, and mixed-use proposals, including condominium conversions.</td>
</tr>
<tr>
<td>Policy 8.2</td>
<td>Address the issue of residences affected by intermittent urban noise from sources such as heating, ventilating, and air-conditioning equipment, and by outdoor maintenance activities such as parking lot sweeping and early morning garbage collection.</td>
</tr>
<tr>
<td>Action 8.2.2</td>
<td>For new multiple-family residential projects and for residential component of mixed-use development, use a standard of 65 L_{dn} in outdoor areas, excluding balconies.</td>
</tr>
<tr>
<td>Action 8.2.3</td>
<td>Strive for a maximum interior noise level of 45 L_{dn} in all new residential units.</td>
</tr>
<tr>
<td>Action 8.2.4</td>
<td>For new downtown mixed-use development or for new residential development affected by noise from BART or helicopters, ensure that the maximum noise levels do not exceed 50 L_{max} in bedrooms and 55 L_{max} in other rooms.</td>
</tr>
<tr>
<td>Goal 9</td>
<td>Control excessive noise sources in existing development.</td>
</tr>
<tr>
<td>Policy 9.1</td>
<td>Control all residential and commercial noise sources to protect the existing noise environment.</td>
</tr>
<tr>
<td>Action 9.1.1</td>
<td>Require the evaluation of noise mitigation measures for projects that would cause a substantial increase in noise.</td>
</tr>
<tr>
<td>Policy 9.2</td>
<td>Strive to reduce traffic noise levels in existing residential areas.</td>
</tr>
<tr>
<td>Action 9.2.2</td>
<td>Control vehicle-related noise.</td>
</tr>
</tbody>
</table>

Source: Walnut Creek General Plan 2025.
Note: a) General Plan 2025 contains a typographical error which is corrected here. Action 8.2.4 established that maximum noise levels must not exceed 50 L_{max} in bedrooms and 55 L_{max} in other rooms, not 50 L_{dn} in bedrooms and 55 L_{dn} in other rooms.
Figure 4.9-1 Land Use Noise Compatibility

<table>
<thead>
<tr>
<th>Land Use Category</th>
<th>Exterior Noise Exposure (Leq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-family residential</td>
<td>55 60 65 70 75 80</td>
</tr>
<tr>
<td>Multi-family residential, hotels, and motels</td>
<td>See footnote(a)</td>
</tr>
<tr>
<td>Outdoor sports and recreation, neighborhood parks and playgrounds</td>
<td></td>
</tr>
<tr>
<td>Schools, libraries, museums, hospitals, personal care, meeting halls, churches</td>
<td></td>
</tr>
<tr>
<td>Office buildings, business, commercial, and professional</td>
<td></td>
</tr>
<tr>
<td>Auditoriums, concert halls, amplifiers</td>
<td></td>
</tr>
</tbody>
</table>

(a) Require noise mitigation to reduce interior noise levels pursuant to Sections 8.2.5. and 8.2.4.

- **NORMALLY ACCEPTABLE**: Specified land use is satisfactory, based on the assumption that any buildings involved are of normal conventional construction, without any special insulation requirements.
- **CONDITIONALLY ACCEPTABLE**: Specified land use may be permitted only after detailed analysis of the noise reduction requirements.
- **UNACCEPTABLE**: New construction or development should not be undertaken because mitigation to comply with noise element policies is unfeasible.

Source: Walnut Creek General Plan 2025, page 6-19.

Walnut Creek Municipal Code

Although the Walnut Creek Municipal Code contains multiple references and provisions related to noise, and regulates aspects of noise from construction activities, the Code does not contain any quantitative standards or any specific provisions that would apply uniquely to the Project and its land use or zoning designations. The zoning regulations and the subdivision ordinance contain multiple general provisions requiring that projects demonstrate that their uses under the zoning code would not result in excessive noise.

The bulk of City noise regulations are contained within Article 2, Noise of Chapter 6, Nuisances under Title 4, Public Welfare, Morals, and Conduct. The provisions of Article 2 relate primarily to the prohibition or regulation of noise from highly specific sources, such as radios, sound amplification devices, animals, or particularly loud or disturbing human voices. Subsection f. of Section 4-6.203 discusses construction and repair activities, and specifies that no construction activity for which a permit is required may occur outside the period of 7:00 a.m. to 6:00 p.m.
on non-holiday weekdays or outside of the hours of operation permitted in an individual building or grading permit. However, Article 2 does provide limited exceptions to these limitations for emergencies and for instances where construction or related activities can be found not to have a negative impact on public health, safety, and welfare. Such exceptions are at the discretion of City staff, with the City Engineer making the appropriate determinations. These construction restrictions are further clarified in Section 9-9.07 of Chapter 9, Site Development, under Title 9, Building Regulations, to specify that no grading activities or noise caused by those activities may occur outside the period of 7:00 a.m. to 5:30 p.m. on non-holiday weekdays, except in case of emergency as determined by the City.

Article 2 also regulates the use of maintenance equipment in association with residential and commercial landscaping and maintenance activities. Such equipment includes but is not limited to “hammers, blowers, trimmers, mowers, chainsaws, power fans or any engine, the operation of which causes noise due to the explosion of operating gases or fluids.” Use of such equipment is limited to the hours from 8:00 a.m. to 7:00 p.m. on weekdays and between 9:00 a.m. and 7:00 p.m. on weekends and holidays. However, businesses and individuals using equipment in the Core Area are permitted to use such equipment as early as 7:00 a.m. on non-holiday weekdays.

4.9.1.3 EXISTING CONDITIONS

The Project area consists of a nine existing residential structures containing a total of 20 units. The Project site is bounded by Lacassie Avenue, Ygnacio Valley Road, Oakland Boulevard, and other residential parcels. The site is located approximately 400 feet to the east of Interstate 680 (I-680), and 90 feet to the east of the BART line. Properties surrounding the Project area include a mix of single- and multi-family residential uses to the south and east, institutional land uses to the south, and commercial office uses to the west across Oakland Boulevard and the elevated BART tracks. Additional details about the Project site and the surrounding areas may be found in the Chapter 3, Project Description, of this Draft EIR.

Proposed Project and Nearby Sensitive Receptors

Certain land uses are particularly sensitive to noise and vibration. These uses include residences, schools, hospital facilities, places of worship, and open space/recreation areas where quiet environments are necessary for the enjoyment, public health, and safety of the community. Commercial and industrial uses are not considered noise- and vibration-sensitive uses. Sensitive receptors in the vicinity of the proposed Project include single- and multi-family residences along Lacassie Avenue, as well as day care/educational uses associated with Walnut Creek Presbyterian Church.

Nearby Noise Sources

On-Road Vehicles

On-road vehicles represent the most significant and constant source of noise in the Project area, and the majority of traffic and resultant noise are associated with traffic flows on I-680 (to the west). Other roadways which
generated relatively high amounts of noise include Oakland Boulevard (to the west) and Ygnacio Valley Road (to the north).

Railways

In general, noise from trains is generated by wheel/rail interaction, locomotive engines, exhaust systems, cooling fans, and other mechanical components, as well as by warning horns and crossing bells near at-grade crossings. The interaction of steel wheels and rails generates rolling noise due to continuous contact; impact noise when a wheel encounters a discontinuity, such as a rail joint, turnout, or crossover; and squeals generated by friction on tight curves.

The Pittsburg-Baypoint BART line is located as near as 90 feet from the Project site. Train frequencies vary throughout the day, with one train in each direction every twenty minutes during the periods of lowest frequency, and one train in each direction every 5 to 10 minutes, on average, during peak periods. Train noise would generally result directly from movement of the trains; horns are used primarily within the stations.

Stationary-Source Noise

Stationary-source noise from uses surrounding the Project site results primarily from human activity and mechanical sources and systems, including heaters, ventilation systems, pumps, compressors, and air conditioning (HVAC) equipment. These sources are associated with both the existing residential and institutional land uses surrounding the site; institutional uses include facilities associated with Walnut Creek Presbyterian Church. Nevertheless, none of these sources would be anticipated to result in an ambient noise level exceeding 60 dBA.

Noise Measurements

Noise levels were monitored on five locations on or near the Project site, including four short-term measurements (nominally 15 minutes in duration) and one long-term measurement (over a 24-hour span). Measurements were taken over the course of November 5 and 6, 2013, using the Larson Davis Model 820 noise monitor. The precise locations of each set of measurements are shown in Figure 4.9-2, and Table 4.9-6 summarizes the noise monitoring results.

Short-term Location 1

Short-term noise monitoring Location 1 is representative of noise received by the residential properties located mid-block along Lacassie Avenue. These residences would potentially be impacted by noise generated by traffic associated with the Project. Existing land uses in immediately adjacent to this short-term location included single- and multi-family residential, commercial offices, and institutional uses, such places of worship and associated childcare uses. This site was located on the south side of Lacassie Avenue, immediately to the east of 1745 Lacassie Avenue, and approximately 385 feet to the west of the centerline of North California Boulevard, 620 feet to the east of the BART tracks, and 1,000 feet to the east of I-680. The microphone and sound meter were positioned on Lacassie Court approximately 30 feet from the centerline of Lacassie Avenue and 125 feet from the boundary of the Project site. Fifteen minutes of noise measurements were acquired, beginning at 4:31 p.m. on Wednesday, November 6. During measurements, winds were light and variable, and the air temperature was 67°F.
FIGURE 4.9-2
APPROXIMATE NOISE MONITORING LOCATIONS

- Long-term monitoring location
- Short-term monitoring location
- BART
- Project Site

Source: The Planning Center | DC&E, 2013.
The noise environment of Location 1 was characterized primarily by the sound of distant traffic along North California Boulevard, Ygnacio Valley Road, and I-680; passing cars along Lacassie Avenue, as well as noise from car doors and conversation. Intermittent noise from passing BART trains was also readily discernible. The 15-minute equivalent noise level at this location (L_{eq}) was 54.2 dBA and the estimated day-night average sound level (L_{dn}) was 58.5 dBA.

Short-term Location 2

Short-term noise monitoring Location 2 is representative of noise that could potentially be received by residents living in units on the north-facing side of the proposed Project, facing Ygnacio Valley Road and the Walnut Creek BART station. Future residents could be impacted by noise generated by BART, as well as by traffic along Ygnacio Valley Road and I-680. The microphone and sound meter were positioned approximately 65 feet from the centerline of Ygnacio Valley Road in the northeastern corner of the Project site. Fifteen minutes of noise measurements were acquired, beginning at 2:32 p.m. on Tuesday, November 5. During measurements, winds were light and variable, and the air temperature was 73°F.

Table 4.9-6 Summary of Noise Monitoring Results

<table>
<thead>
<tr>
<th>Monitoring Location</th>
<th>Start Date/Time</th>
<th>Duration</th>
<th>15-min L_{eq}</th>
<th>L_{dn}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-term Location 1</td>
<td>4:31 p.m. 11/06/2013</td>
<td>15 minutes</td>
<td>54.2</td>
<td>58.5a</td>
</tr>
<tr>
<td>Short-term Location 2</td>
<td>2:32 p.m. 11/05/2013</td>
<td>15 minutes</td>
<td>69.9</td>
<td>72.6a</td>
</tr>
<tr>
<td>Short-term Location 3</td>
<td>5:00 p.m. 11/06/2013</td>
<td>15 minutes</td>
<td>59.2</td>
<td>72.4a</td>
</tr>
<tr>
<td>Short-term Location 4</td>
<td>2:13 p.m. 11/05/2013</td>
<td>15 minutes</td>
<td>64.4</td>
<td>62.4a</td>
</tr>
<tr>
<td>Long-term Location 1</td>
<td>3:45 p.m. 11/05/2013</td>
<td>24 hours</td>
<td>N/A</td>
<td>72.2</td>
</tr>
</tbody>
</table>

*a. L_{dn} estimates for all short-term noise monitoring locations were determined by comparing the 15-minute L_{eq} measured at that location with the 15-minute L_{eq} for the same time period at the long-term monitoring location. For additional explanation of this approach, see footnote in main text, below.

The noise environment of Location 1 was characterized primarily by the sound of distant traffic along North California Boulevard, Ygnacio Valley Road, and I-680; passing cars along Lacassie Avenue, as well as noise from car doors and conversation. Intermittent noise from passing BART trains was also readily discernible. The 15-minute equivalent noise level at this location (L_{eq}) was 54.2 dBA and the estimated day-night average sound level (L_{dn}) was 58.5 dBA.5

Short-term Location 2

Short-term noise monitoring Location 2 is representative of noise that could potentially be received by residents living in units on the north-facing side of the proposed Project, facing Ygnacio Valley Road and the Walnut Creek BART station. Future residents could be impacted by noise generated by BART, as well as by traffic along Ygnacio Valley Road and I-680. The microphone and sound meter were positioned approximately 65 feet from the centerline of Ygnacio Valley Road in the northeastern corner of the Project site. Fifteen minutes of noise measurements were acquired, beginning at 2:32 p.m. on Tuesday, November 5. During measurements, winds were light and variable, and the air temperature was 73°F.

5 L_{dn} estimates for all short-term noise monitoring locations were determined by comparing the 15-minute L_{eq} measured at that location with the 15-minute L_{eq} for the same time period at the long-term monitoring location. The difference between these L_{eq} levels was applied to the L_{dn} measured at the long-term monitoring site to arrive at an estimated L_{dn} for the short-term location. For example, if the 15-minute L_{eq} at a particular short-term location was 55 dBA, and the 15-minute L_{eq} for the same time period at the long-term monitoring site were 60 dBA, then the difference of 5 dBA would be added to the L_{dn} at the long-term monitoring location to estimate the L_{dn} at the short-term monitoring location. Although differences between the various monitoring locations, including distance and line-of-sight to noise sources, result in a degree of imprecision for these estimates, this method avoids making additional assumptions and therefore represents the best practicable approach for estimating an approximate L_{dn} value at the short-term locations.
The noise environment of Location 2 was characterized primarily by the sound of passing traffic along Ygnacio Valley Road, as well as traffic along Oakland Boulevard, North California Boulevard, and I-680. The noise environment was also punctuated by BART trains. The 15-minute equivalent noise level at this location (L_{eq}) was 69.9 dBA and the estimated day-night average sound level (L_{dn}) was 72.6 dBA.

Short-term Location 3

Short-term noise monitoring Location 3 is representative of noise that could potentially be received by residents living in units on the south-facing side of the Proposed Project, along Lacassie Avenue. The microphone and sound meter were positioned approximately 35 feet from the centerline of Lacassie Avenue in the southeastern corner of the Project site. Fifteen minutes of noise measurements were acquired, beginning at 5:00 p.m. on Wednesday, November 6. During measurements, winds were light and variable, and the air temperature was 64°F.

The noise environment of Location 3 was characterized primarily by the sound of distant traffic along Northern California Boulevard, Ygnacio Valley Road, and I-680; passing cars along Lacassie Avenue; and car doors and conversation. Intermittent noise from passing BART trains was also readily discernible at times. The 15-minute equivalent noise level (L_{eq}) at this location was 59.2 dBA and the estimated day-night average sound level (L_{dn}) was 60.8 dBA.

Short-term Location 4

Short-term noise monitoring Location 4 is representative of noise that could potentially be received by residents living in units on the east-facing side of the Proposed Project, between Lacassie Avenue and Ygnacio Valley Road. The microphone and sound meter were positioned approximately 40 feet from the centerline of Lacassie Avenue in the southeastern corner of the Project site. Fifteen minutes of noise measurements were acquired, beginning at 2:13 p.m. on Tuesday, November 5. During measurements, winds were light and variable, and the air temperature was 74°F.

The noise environment of Location 4 was characterized primarily by the sound of passing traffic along Oakland Boulevard. More distant traffic along Ygnacio Valley Road, North California Boulevard, and I-680 could also sometimes be discerned. The noise environment was also punctuated by BART trains, as well as by barking dogs. The 15-minute equivalent noise level (L_{eq}) at this location was 64.4 dBA and the estimated day-night average sound level (L_{dn}) was 62.4 dBA.

Long-term Location 1

Long-term noise monitoring Location 1 is representative of the overall noise environment at the Project site and, in conjunction with the results of the short-term monitoring, serves as a means to estimate overall noise levels at all noise monitoring locations. Long-term noise monitoring Location 1 was subject to traffic noise from Ygnacio Valley Road, Oakland Boulevard, I-680, the BART line (railway noise), and, to a lesser extent, other area roadways. The microphone and sound meter were positioned approximately 115 feet to the southeast of the center of the intersection of Oakland Boulevard and Ygnacio Valley Road, in the northwestern corner of the Project site. Twenty-four hours of noise measurements were acquired, beginning at 3:45 p.m. on Tuesday, November 5. At the onset of the measurements, winds were light and variable, and the air temperature was 72°F. The 24-hour L_{eq} at
the long-term monitoring location was 67.9 dBA, the Ldn was 72.2 dBA, and the Community Noise Equivalent Level (CNEL) was 72.5 dBA.

4.9.2 STANDARDS OF SIGNIFICANCE

An Initial Study was prepared for the proposed Project (see Appendix A of this Draft EIR). Based on the analysis contained in the Initial Study, it was determined that development of the proposed Project would not result in significant environmental impacts per the following significance standards, and therefore, they are not discussed further in this chapter:

- For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?
- For a project within the vicinity of a private airstrip, would the project expose people residing or working in the project area to excessive noise levels?

Based on the Initial Study, it was determined that the proposed Project would result in a significant noise impact if it would:

1. Expose people to or generate noise levels in excess of standards established in the General Plan or the Municipal Code, and/or the applicable standards of other agencies.
2. Expose people to or generate excessive groundborne vibration or groundborne noise levels.
3. Result in a substantial permanent increase in ambient noise levels in the vicinity of the Project above levels existing without the Project.
4. Result in a substantial temporary or periodic increase in ambient noise levels in the vicinity of the Project above levels existing without the Project.

4.9.3 IMPACT DISCUSSION

This section analyzes potential Project-specific and cumulative impacts in regard to noise.

| NOISE-1 | The proposed Project would result in the exposure of persons to or generation of noise levels in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies. |

Implementation of the proposed Project would have a significant impact if it would expose new and existing receptors to incompatible levels of noise from both the operations and increased traffic resulting from future development of the Project.
Code of Regulations Title 24, California Building Code

Since the proposed Project is residential in nature, its indoor living spaces are required to adhere to the interior noise standards of Title 24 of the California Building Code. As illustrated in Table 4.9-6, above, portions of the Project site are in areas that are subject to ambient noise levels in excess of 60 dBA. Therefore, the Project applicant must submit a report with the building plans demonstrating how the noise control measures incorporated into the design of the Project will meet the 45 dBA interior noise limit.

Walnut Creek General Plan 2025 Safety and Noise Chapter

The following discussion addresses how the Project would comply with the following pertinent policies and actions of the General Plan 2025 in regard to the preventing the generation of or exposure to excess noise.

- **Goal 8 Provide compatible noise environments for new development, redevelopment, and condominium conversions.**
- **Policy 8.1 Apply the noise and land use compatibility table and standards to all residential, commercial, and mixed-use proposals, including condominium conversions.**
- **Policy 8.2 Address the issue of residences affected by intermittent urban noise from sources such as heating, ventilating, and air-conditioning equipment, and by outdoor maintenance activities such as parking lot sweeping and early morning garbage collection.**
- **Action 8.2.2 For new multiple-family residential projects and for residential component of mixed-use development, use a standard of 65 Ldn in outdoor areas, excluding balconies.**
- **Action 8.2.3 Strive for a maximum interior noise level of 45 Ldn in all new residential units.**
- **Action 8.2.4 For new downtown mixed-use development or for new residential development affected by noise from BART or helicopters, ensure that the maximum noise levels do not exceed 50 Lmax in bedrooms and 55 Lmax in other rooms.**

The proposed Project would be subject to the land use noise compatibility standards included in Figure 8 the General Plan 2025 Safety and Noise Chapter (see Figure 4.9-1 above). For multi-family uses, noise levels between 65 and 75 dBA Ldn are regarded as conditionally acceptable. As illustrated in Table 4.9-6, above, the portions of the Project facing to the north and west would be subject to ambient noise levels over 72 dBA.

In regard to Action 8.2.2, the proposed Project would include two different outdoor areas for the use of residents: one would be a shared interior courtyard completely surrounded by the structure (see Figure 3-12 in Chapter 3, Project Description, of this Draft EIR), and the second would be a shared rooftop deck located on the uppermost Level 4 of the building at approximately 47 feet tall (see Figure 3-8 in Chapter 3).

6 General Plan 2025 contains a typographical error which is corrected here. Action 8.2.4 established that maximum noise levels must not exceed 50 Lmax in bedrooms and 55 Lmax in other rooms, not 50 Ldn in bedrooms and 55 Ldn in other rooms.
The highest estimated L_{dn} for the Project site was 72.6 at short-term monitoring location ST-2, which was positioned on the northern façade of the proposed structure, along Ygnacio Valley Road. Therefore, 72.6 dBA is the theoretical maximum L_{dn} that could be experienced by an outdoor area of the proposed Project; however, there are a variety of circumstances that would serve to reduce the noise levels of the proposed outdoor areas. In the case of the roof deck, its location on the uppermost floor of the building on Level 4, would not only increase its distance from the roadway approximately 47 feet below, but would serve to eliminate direct line-of-sight for the vast majority of the deck’s area. Given this distance, Project noise levels on the roof deck would be lower than the theoretical maximum of 72.6 dBA. The enclosed courtyard would effectively shield residents from noise levels received from outside the proposed Project. Therefore, given the combination of distance from the noise sources and the noise barrier effect, the anticipated ambient noise levels would be reduced by a minimum of 12 to 15 dBA. Thus, neither the roof deck nor the courtyard would be expected to experience ambient noise levels in excess of City standards of 65 L_{dn} in outdoor areas meeting the “normally acceptable” noise level standard.

In regards to Action 8.2.3 and 8.2.4, interior noise levels within buildings of standard residential construction are approximately 15 dBA lower than exterior noise levels with the windows partially open for ventilation. With the windows closed, standard residential construction typically provides 20 to 25 decibels of exterior to interior noise reduction. Where exterior noise levels range from 60 to 65 dBA L_{dn}, the interior noise level can typically be maintained below City standards (45 dBA L_{dn}), assuming standard construction methods and the incorporation of forced air mechanical ventilation systems in residential units. These systems allow the occupant the option of controlling noise by closing the windows. In noise environments where exterior levels exceed 65 dBA L_{dn}, exterior-to-interior noise reduction features, such as sound-rated building elements (e.g. wall systems, windows, and doors), are required to maintain interior noise levels at or below 45 dBA L_{dn}.

Given the portions of the Project facing to the north and west that would be subject to ambient noise levels over 72 dBA as shown in Table 4.9-6, impacts would be considered significant.

Significance Without Mitigation: Significant

NOISE-2 The proposed Project would not result in the exposure of persons to or generation of excessive groundborne vibration or ground borne noise levels.

Specific quantitative thresholds for what is considered “excessive” vibration or ground-borne noise are not identified in the CEQA. Furthermore, neither the City nor the Contra Costa County have established such thresholds. Therefore, using industry-accepted criteria from the FTA, a significant impact would occur if:

- Implementation of the Project would exceed the criteria for annoyance presented in Table 4.9-3.
- Implementation of the Project would result in vibration exceeding the criteria presented in Table 4.9-4 that could cause architectural damage in adjacent/nearby buildings.

The following discusses short-term construction and long-term operations impacts from implementation of the Project:

Short-Term Construction Vibration Impacts

Project demolition and construction would take place during a 22-month period. Any construction-related vibration would be limited to this timeframe and would also be limited geographically to the areas closest to vibration-intensive construction activities. Construction would include site preparation work, demolition, excavation, foundation work, and erecting of new structures.

The effect of vibration on buildings in the vicinity of a construction site varies depending on soil type, ground strata, and receptor-building construction. The results from vibration can range from no perceptible effects at the lowest vibration levels, to low rumbling sounds and perceptible vibrations at moderate levels, to slight structural damage at the highest levels. Vibration from construction activities rarely reaches the levels that can damage structures, but groundborne vibration and groundborne noise can reach perceptible and audible levels in buildings that are very close to the construction site.8

As shown in Table 4.9-7, which lists vibration levels for construction equipment, pile driving is the construction technique with the greatest potential to generate high ground vibration levels and is of primary concern in regard to structural damage; particularly when it occurs within 100 feet of structures. Other construction activities, such as caisson drilling, the use of jackhammers, rock drills and other high-power or vibratory tools, and the use of rolling stock equipment (tracked vehicles, compactors, etc.) may also potentially generate substantial vibration in the immediate vicinity.

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Approximate Velocity Level at 25 Feet (VdB)</th>
<th>Approximate RMSa Velocity at 25 Feet (inch/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pile Driver (Impact) Upper Range</td>
<td>112</td>
<td>1.518</td>
</tr>
<tr>
<td>Pile Driver (Impact) Lower Range</td>
<td>104</td>
<td>0.644</td>
</tr>
<tr>
<td>Pile Driver (Sonic) Upper Range</td>
<td>105</td>
<td>0.734</td>
</tr>
<tr>
<td>Pile Driver (Sonic) Lower Range</td>
<td>93</td>
<td>0.170</td>
</tr>
<tr>
<td>Large Bulldozer</td>
<td>87</td>
<td>0.089</td>
</tr>
<tr>
<td>Caisson Drilling</td>
<td>87</td>
<td>0.089</td>
</tr>
</tbody>
</table>

Given that demolition and construction for the proposed Project would not include pile driving, the potential for annoying or damaging vibration from Project construction activities is relatively low. Demolition, excavation, and grading activities typically generate the highest vibration levels during construction activities. Except for pile driving, maximum vibration levels measured at a distance of 25 feet from an individual piece of typical construction equipment rarely exceed the thresholds for human annoyance for industrial uses (i.e., 84 to 90 VdB) or the thresholds for architectural damage at any type of receptor land use (i.e., 0.2 to 0.5 RMS velocity in inches per second).

The nearest sensitive receptor is located at 1863 Lacassie Avenue, approximately 60 feet to the south of the nearest area subject to demolition or excavation. Since this nearest receptor is 35 feet beyond the distance that would be of concern for potential vibration effects (i.e., 25 feet), construction of the proposed Project would not result in levels of vibration that would be readily perceptible, let alone damaging, at nearby sensitive receptors. In general, construction would be localized, would occur intermittently and variably, and would only occur for relatively short periods of time.

Given that construction and demolition activities related to the Project would not make use of the most vibration-intensive construction equipment (i.e., pile drivers), and given that most sensitive receptors and structures are located at sufficient distance (at least 60 feet) from construction areas so as to prevent vibration impacts, construction-related vibration would therefore result in a less-than-significant impact with respect to both annoyance and architectural damage.

Vibration Related to Operations

The Project consists only of residential land uses. None of these uses are typically associated with the potential generation of perceptible and/or potentially damaging levels of vibration. Therefore, no notably vibration sources would be associated with on-going operations at the proposed Project.

Development of the proposed Project would not result in exposure of people to or generation of excessive levels of vibration and impacts would be less than significant.

Significance Without Mitigation: Less than significant.
The proposed Project would not result in a substantial permanent increase in ambient noise levels in the Project vicinity above levels existing without the Project.

Development of the proposed Project would have a significant impact if it would result in a substantial permanent increase in ambient noise levels in the Project vicinity above levels existing without the Project. CEQA does not define what noise level increase would be considered substantial; however, the common practice in impact assessments generally considers any 5 dBA or greater increase due to the Project to be substantial, and considers a 3 dBA or greater increase due to the Project to be substantial, if the resulting noise level would be in excess of an applicable ambient noise level standard. Neither the General Plan 2025 nor the Municipal Code establish specific thresholds for ambient noise increases. Thus, in the absence of explicit thresholds, the aforementioned +5 and +3 dBA Project-related thresholds are used for evaluating substantial permanent increases to ambient noise levels.

Operational Noise

Noise is regulated by numerous codes and ordinances across federal, State, and local agencies. Development of the proposed Project would result in the construction of new residential dwellings and associated amenities. Ongoing occupancy and use of the residences and attendant features would involve noise-generating activities and equipment that would be similar to those that currently exist on the site; including landscaping, maintenance, HVAC systems, and day-to-day activity by residents.

Landscaping, maintenance, HVAC systems, and human activity are all intermittent sources of low-level noise that typically occur with residential land uses. The frequency, intensity, and duration of these activities tend to vary over time depending on any number of factors, and the proposed Project is anticipated to result in their continued occurrence.

The Project would include an increase in the number of dwelling units and residents, and it can therefore be assumed that there would be an increase in the noise resulting from basic human activity and building systems such as HVAC. In the case of building systems, such as HVAC, current construction and equipment standards would serve to minimize noise impacts from these sources. Overall, such activities and systems associated with residential uses are not typically considered to be a source of excessive noise that would result in a significant impact to ambient noise levels. Given these considerations, routine ongoing activities and operations on the Project site would not contribute to a substantial permanent increase to ambient noise levels and the impact in this regard would be less than significant.

On-Road Vehicle Noise

The additional units that would be developed under the Project would increase the number of residents in this area by up to 338 new residents, with many residents continuing to make trips by private automobile. As shown in Chapter 4.12, Transportation and Traffic, of this Draft EIR, the proposed Project is anticipated to generate 711 daily net vehicle trips in the Project vicinity, and this increased traffic could result in higher ambient noise levels. Noise would be generated by vehicles as they arrive and depart from the parking areas associated with the Project, with sensitive receptors near the main parking entrance experiencing the greatest potential impact.
Given that the overall mix of vehicles and daily travel patterns of residents are not expected to change significantly under the proposed Project, potential increases to traffic noise are purely a function of increases to traffic volumes on surrounding roadways. Table 4.9-8, below, illustrates the increases to ambient noise levels that would be expected during the a.m. and p.m. peak-hours on the primary roadways serving the proposed Project. Based on these projections, increased traffic associated with development of the Project would not result in increases to ambient noise levels of 3 dBA or greater, either overall or during peak periods, even accounting for the cumulative impact of anticipated future Projects. Given that the analysis shows no significant increase in noise levels on the impacted roadways, it can be assumed that other roadways in the vicinity would likewise not experience a significant increase in traffic noise, since they would handle an even lower proportion of Project-related traffic increases. Therefore, the impact in this regard would be less than significant.

Significance Without Mitigation: Less than significant.

TABLE 4.9-8 EXISTING AND PROJECTED ROADWAY TRAFFIC VOLUMES AND NOISE LEVELS

<table>
<thead>
<tr>
<th>Roadway Segment</th>
<th>Estimated Average Daily Traffic</th>
<th>Modeled Noise Level dBA<sup>a</sup></th>
<th>Increase dBA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Existing</td>
<td>Future<sup>b</sup></td>
<td>Existing</td>
</tr>
<tr>
<td>Lacassie Ave. between Project and N. California Blvd.</td>
<td>600</td>
<td>1070</td>
<td>53.8</td>
</tr>
<tr>
<td>Lacassie Ave. between N. California Blvd. and Main St.</td>
<td>1920</td>
<td>2110</td>
<td>58.9</td>
</tr>
<tr>
<td>Trinity Ave. between Oakland Blvd. and N. California Blvd.</td>
<td>3160</td>
<td>3860</td>
<td>61.0</td>
</tr>
<tr>
<td>N. California Blvd. between Trinity Ave. and Lacassie Ave.</td>
<td>16210</td>
<td>18280</td>
<td>68.3</td>
</tr>
<tr>
<td>N. California Blvd. between Lacassie Ave. and Ygnacio Valley Rd.</td>
<td>16760</td>
<td>18930</td>
<td>68.4</td>
</tr>
<tr>
<td>N. California Blvd. between Ygnacio Valley Road and N. Main St.</td>
<td>17,450</td>
<td>18,990</td>
<td>68.6</td>
</tr>
<tr>
<td>Ygnacio Valley Rd. between N. Main St. and N. California Blvd.</td>
<td>37,840</td>
<td>42,910</td>
<td>72.0</td>
</tr>
<tr>
<td>Ygnacio Valley Rd. between N. California Blvd. and Oakland Blvd.</td>
<td>37,910</td>
<td>43,170</td>
<td>72.9</td>
</tr>
<tr>
<td>Ygnacio Valley Rd. between Oakland Blvd. and I-680 On-Ramps</td>
<td>23,050</td>
<td>25,990</td>
<td>70.7</td>
</tr>
<tr>
<td>Oakland Blvd. South of Ygnacio Valley Road</td>
<td>25,300</td>
<td>274,170</td>
<td>71.1</td>
</tr>
<tr>
<td>I-680 between Junction with SR 24 and Ygnacio Valley Rd.</td>
<td>232,000<sup>c</sup></td>
<td>237,260<sup>d</sup></td>
<td>82.7</td>
</tr>
</tbody>
</table>

^a Resulting CNEL at a distance of 100 feet.
^b Future ADT includes all anticipated developments in the Project vicinity and represents future cumulative impacts.
^c From 2011 Traffic Volumes on the California State Highway System, provided by the California Department of Transportation.
^d Future Traffic volumes on I-680 were estimated using current volume data plus maximum of cumulative ADT increases on roadways in the Project vicinity.

The proposed Project would result in a substantial temporary or periodic increase in ambient noise levels in the Project vicinity above levels existing without the Project.

Development of the proposed Project would have a significant impact if it would result in a substantial temporary or periodic increase in ambient noise levels in the Project vicinity above levels existing without the Project. As described in Chapter 3, Project Description, of this Draft EIR, demolition and construction would take place over a period of approximately 20 months, which is anticipated to commence in March 2015; subject to regulatory approval. Demolition would take place over a period of approximately 30 working days, while site preparation would be completed over a 5-month period. Demolition debris would be hauled away for disposal in accordance with the Walnut Creek Construction Debris Recycling Ordinance. Debris to be hauled would include approximately 118 trees (clean lumber), 560 tons of building demolition debris, 4,200 tons of asphalt/concrete material, and 40,725 cubic yards of grading and soil off-haul.

Typical equipment to be used for demolition and site preparation would include excavators, a skid steer loader, a grader, a rubber-tired dozer, scrapers, and an off-highway truck. During the construction period, there would be an average of approximately 10 workers on-site daily. No pile driving, rock blasting, or material crushing would occur during the construction phase at the site. Typical equipment to be used for construction of the Project would include a backhoe, a crane, aerial lifts, a generator, a diesel pump, dumpers, rollers, and a paver.

As discussed previously, this EIR adopts the following thresholds for substantial increases to ambient noise: any increase in noise of 5 dBA or greater would constitute a substantial increase, and any increase of 3 dBA or greater would constitute a substantial increase, if the resulting noise level exceeds the range of what would be “normally acceptable” at the land use where the noise is being received.

Noise from construction equipment and various construction-related activities is frequently a cause of temporary or periodic increases in ambient noise levels. Temporary or periodic increases in ambient noise levels under the proposed Project would chiefly result from construction activities associated with demolition, excavation, and construction under the proposed Project. Table 4.9-9 below shows typical noise levels generated by commonly-used pieces of construction equipment, but is not meant to imply that all the equipment listed would be used for the construction of the proposed Project.

9 Walnut Creek Municipal Code, Title 3 (Sanitation and Health), Chapter 6 (Solid Waste and Recycling), Article 6 (Construction Debris Recycling).
Construction noise impacts typically occur when construction activities take place during noise-sensitive times of the day (e.g., early morning, evening, or nighttime hours), when construction activities occur immediately adjacent to noise sensitive land uses, or when construction durations last over extended periods of time. Limiting construction activities to daytime hours is often a simple method to reduce the potential for construction noise impacts. In areas immediately adjacent to construction activities, temporary noise barriers and the selection and utilization of “quiet” construction equipment can also reduce the potential for significant noise impacts.

The Municipal Code contains provisions which would serve to reduce the impact from construction noise. As discussed above, subsection f. of Section 4-6.203 specifies that no construction activity for which a permit is required may occur outside the period of 7:00 a.m. to 6:00 p.m. on non-holiday weekdays or outside of the hours of operation permitted in an individual building or grading permit. These construction restrictions are further clarified in Section 9-9.07 of Chapter 9, Site Development, under Title 9, Building Regulations to specify that no...
grading activities or noise caused by those activities with the potential to impact residential or hospital uses may occur outside the period of 7:00 a.m. to 5:30 p.m. on non-holiday weekdays—except in case of emergency (as determined by the City).

Construction Worker Noise

The transport of workers and equipment to the construction site would incrementally increase noise levels along site access roadways. The primary access route for the construction vehicles would be Pacific Coast Highway. Although there would be a relatively high single-event noise exposure potential with passing trucks (a maximum noise level of 86 dBA at 50 feet), the expected number of workers and trucks is minimal for the scope and extent of this type of project. Based on the construction information provided by the applicant, it is projected that construction-related activities would generate 230 trips per day on the adjacent roadways around the site during the peak construction phase, which is anticipated to last approximately 9 months of the total 20-month construction period. This traffic increment, when compared to the existing traffic flows, would equate to an associated noise level increment of less than half of a dB; well below the 3 dB increase that is the threshold for an audible increase in the ambient noise environment. In addition, truck trips would be spread throughout the work day and would primarily occur during non-peak traffic periods. Therefore, these impacts are less than significant at noise receptors along the construction routes.

Construction Equipment Noise

Local residents – primarily located to the east and south of the Project site – would be subject to elevated noise levels due to the operation of Project-related construction equipment. Construction activities are carried out in discrete steps, each of which has its own mix of equipment and, consequently, its own noise characteristics. These various phases would change the character of the noise levels surrounding the construction site as work progresses. Typically, the estimated construction noise levels are governed primarily by the equipment that produces the highest noise levels. Construction noise levels for each generalized construction phase (ground clearing/demolition, excavation, foundation, construction, building construction, finishing, and site clean-up) are based on a typical construction equipment mix and do not include use of an atypical, very loud, and vibration-intensive equipment such as pile drivers.

Mass grading, site preparation, and foundation excavations at the Project site would involve the heaviest and loudest pieces of construction equipment. Consequently, this portion of construction would result in some of the loudest noise levels at the existing noise-sensitive receptors near the proposed Project site. Grading and excavation activities associated with infrastructure and utility improvements for the Project site would occur for approximately five months. Demolition would take place over a period of approximately 30 working days, while site preparation would be completed over a 5-month period. The total construction period is expected to be 20 months long. Table 4.9-10 shows typical noise levels from each construction phase at the closest noise-sensitive areas.

10 Construction trips are shown in the “CalEEMod Equipment” table located on page 10 of Appendix C, Air Quality and Greenhouse Gas Data, of this Draft EIR.

11 Construction noise levels reported in *Noise from Construction Equipment and Operations, Building Equipment, and Home Appliances* (Bolt, Beranek, and Newman 1971) were used to estimate future construction noise levels for the proposed Project.
Table 4.9-10 Worst-Case\(^1\) Construction Noise Levels at Noise-Sensitive Uses, dBA LEQ

<table>
<thead>
<tr>
<th>Construction Phase</th>
<th>Off-Site Residences to East; Within ~60 Feet</th>
<th>Off-Site Residences to South; Within ~125 Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground Clearing/Grading</td>
<td>83</td>
<td>73</td>
</tr>
<tr>
<td>Excavation</td>
<td>88</td>
<td>78</td>
</tr>
<tr>
<td>Foundation Construction</td>
<td>81</td>
<td>71</td>
</tr>
<tr>
<td>Building Construction</td>
<td>81</td>
<td>71</td>
</tr>
<tr>
<td>Finishing and Site Cleanup</td>
<td>88</td>
<td>78</td>
</tr>
</tbody>
</table>

Source: Bolt, Beranek and Newman 1971

Note: Noise levels from construction activities do not take into account barrier attenuation provided by intervening structures or topographical shielding effects, but ground absorption effects (for soft soil and/or vegetation) are included.

1) Assuming all applicable equipment in use for each phase.

These values take into account both the number of equipment pieces and their spacing within the construction zone for a typical residential construction project.\(^{12}\) Noise levels were conservatively calculated for the operation of all applicable construction equipment within the activity zones closest to the nearest sensitive receptors. Also for conservatism, the indicated noise levels neglect any barrier attenuation benefits that might be afforded by intervening structures. Also, noise levels during later phases, such as the building assembly period, are typically less than the tabled values since a majority of the work is inside the building shells and the constructed structures further break line-of-sight noise propagation to off-site receptors. In general, construction noise at noise-sensitive receptors located close to Ygnacio Valley Road, California Boulevard, or Oakland Boulevard would be outweighed by traffic noise along these busy arterials and would be predominantly inaudible. Construction noise experienced at noise-sensitive receptors adjacent to Lacassie Avenue would be less overcome by traffic flow noise. For all receptors, though, construction noise may, at times, be audible and potentially annoying; depending on the types of equipment in use, their location relative to any given receptor, and the operations being conducted.

Although construction activities may briefly or occasionally serve to elevate ambient noise levels at adjoining residences, these impacts are limited to the temporary demolition and construction period. Nevertheless, given the sensitive receptors are within 60 feet of the construction areas of the Project site, this impact would remain significant without mitigation.

Construction activities associated with the development of the proposed Project could result in substantial temporary or periodic increases in ambient noise levels in the Project vicinity. Thus, impacts would be significant.

Significance Without Mitigation: Significant.

\(^{12}\) This approach is consistent with the envisioned equipment mix and usage at this project site. For additional details on this construction equipment distribution, please refer to the Air Quality assessment Appendix.
4.9.4 CUMULATIVE IMPACTS

NOISE-5 The proposed Project, in combination with past, present and reasonably foreseeable projects, would result in less than significant cumulative impacts with respect to noise.

The above analysis of the proposed Project addresses cumulative impacts in regard to noise, as well as groundborne noise and vibration in the Project vicinity. Although multiple simultaneous nearby noise sources may, in combination, result in higher overall noise levels, this effect is captured and accounted for by the ambient noise level metrics that form the basis of the standards of significance for noise analysis. Any measurement of sound or ambient noise, whether for the purpose of evaluating land use compatibility, establishing compliance with noise standards, or determining point-source violations of a noise ordinance, necessarily will incorporate noise from all other nearby, perceptible sources. Ambient noise level measurements included noise from building operations and equipment, such as HVAC; vehicles and traffic; BART trains; human activity; and animals and natural sounds, such as rustling leaves. To specifically estimate the proposed Project’s contribution to traffic noise, existing noise levels were compared to those projected with completion of the proposed Project, as well as other anticipated projects in the vicinity as listed on Table 4.2-1 and shown on Figure 4.2-1 in Chapter 4.2 Cumulative Analysis, of this Draft EIR. As demonstrated above, the Project’s contribution to increases in ambient noise levels and vibration would be less than significant, even when accounting for traffic increases from anticipated nearby Projects. The proposed Project would therefore not contribute to cumulatively considerable noise and vibration the impact would be less than significant.

Significance Without Mitigation: Less than significant.

4.9.5 SUMMARY OF SIGNIFICANT IMPACTS AND MITIGATION MEASURES

The Project would result in a significant impact requiring subsequent mitigation for topics NOISE-1 and NOISE-4. Aside from these significant impacts, the Project would not result in any additional significant Project-specific or cumulative impacts, and no mitigation measures beyond that below would be necessary.

NOISE-1 The proposed Project would result in the exposure of persons to or generation of noise levels in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies.

The Project proposes residential units in an area where noise levels are considered “conditionally acceptable,” resulting in a significant impact. The site design locates primary outdoor activity areas in shielded courtyards and at the highest level of the building approximately 47 feet about grade. Exterior noise levels would be 65 dBA Ldn or less, assuming shielding provided by the structure surrounding the outdoor courtyard areas and for the roof deck location on Level 4. With these inherent shielding benefits, outdoor areas at the Project would meet the “normally acceptable” noise level standard.
For interior environments, the portions of the Project facing to the north and west would be subject to ambient noise levels over 72 dBA, as shown in Table 4.9-6. Assuming standard building materials and construction techniques for multi-family residential developments, the exterior-to-interior noise reduction is likely to result in interior environments which may exceed General Plan 2025 Policy 8.1, Action 8.2.3 (maximum interior noise level of 45 L$_{dn}$), Action 8.2.4 (maximum noise levels of 50 dBA L$_{max}$ in bedrooms and 55 dBA L$_{max}$ in other rooms), and/or State standards (interior L$_{dn}$ of 45 dBA or less). The following mitigation measure reduces interior noise to acceptable levels.

Mitigation Measure NOISE-1: Sound-rated building construction shall be used to achieve acceptable indoor noise levels (45 dBA L$_{dn}$, 50 dBA L$_{max}$ in bedrooms, and 55 dBA L$_{max}$ in other rooms) in residential units throughout the site. Building sound insulation treatments include, but are not limited to, sound-insulating windows and doors, resilient wall constructions, heavy siding and roofing materials (e.g., stucco, Hardi-plank), ventilation silencers, and gasketing. All residential units in the Project shall require mechanical ventilation or a sound attenuating “zee” duct to allow for air circulation while windows are closed for noise control. The specification of these treatments shall be developed during the architectural design of the buildings and shall be summarized in a report. This report shall be submitted and approved by the City of Walnut Creek Building Department prior to issuance of building permits.

NOISE-4 The proposed Project would result in a substantial temporary or periodic increase in ambient noise levels in the Project vicinity above levels existing without the Project.

Mitigation Measure NOISE-4: Develop a construction mitigation plan in close coordination with adjacent noise-sensitive land uses so that construction activities can be scheduled to minimize noise disturbance. The construction mitigation plan shall consider the following available controls to reduce construction noise levels as low as practical.

- Ensure that construction activities (including the loading and unloading of materials and truck movements) are conducted in accordance with the time-of-day restrictions set forth in Municipal Code Section 4.6-203f and Section 9-9.07.
- Equip all internal combustion engine-driven equipment with mufflers that are in good condition and appropriate for the equipment.
- Keep Construction equipment well maintained.
- Utilize “quiet” models of air compressors and other stationary noise sources where technology exists. “Quiet” equipment typical generates noise levels that are 5 dBA or more lower than that of conventional equipment.
- Locate stationary noise-generating equipment as far as feasible from sensitive receptors (e.g., residences) when these receptors adjoin or are within 200 feet of a construction Project area.
- Prohibit unnecessary idling of internal combustion engines.
- Construct temporary sound barriers using plywood or similar material bearing the same sound attenuating effectiveness as plywood between portions of the construction sites and sensitive receptors, such as...
residences and public areas. These temporary sound barriers, which could also consist of construction-grade sound blankets/curtains, should be at least 12 feet in height.

- Residences or noise-sensitive land uses within 500 feet of the construction site should be notified in writing of construction at least seven (7) days prior to the onset of construction activities. A “construction liaison” contact person should be designated; he/she would be responsible for responding to any local complaints about construction noise. The liaison would determine the cause of the noise complaints (e.g., starting too early, bad muffler, etc.) and institute reasonable measures to correct the problem. The phone number of the liaison should be conspicuously posted at the construction site.

Significance With Mitigation: Less than significant.

The combined effects of quiet equipment, locating stationary sources away from receivers, carefully timing construction activities, using barriers where practicable, and undertaking other provisions of Mitigation Measure NOISE-4, would reduce the impact to a *less-than-significant* level.
4.10 POPULATION AND HOUSING

This chapter describes the population and housing characteristics of Walnut Creek, including the Project site, and evaluates the potential impacts related to population and housing that could result from development of the Project.

4.10.1 ENVIRONMENTAL SETTING

4.10.1.1 REGULATORY FRAMEWORK

The regulatory framework related to population and housing is described below.

Walnut Creek General Plan 2025

General Plan 2025 outlines a vision for Walnut Creek that includes support for a variety of neighborhoods with housing of various types, densities, and prices, accommodating all income levels and ages, as well as blending new development successfully into existing neighborhoods. Table 4.10-1, below, enumerates the goals and policies related to population, employment, and housing contained in the General Plan 2025.

City of Walnut Creek 2009–2014 Housing Element

The City’s Housing Element describes how Walnut Creek plans to meet the projected housing needs of all economic segments of the community and the City’s fair share allocation of regional housing needs. Additionally, the Housing Element contains policies and programs that pertain to high density urban infill housing, similar to the proposed Project. Table 4.10-2, below, illustrates these goals, policies, and programs. The City is currently in the process of updating its Housing Element for the 2015-2022 planning period. The adoption hearing for this Housing Element is expected to occur in September of 2014.

City of Walnut Creek Inclusionary Housing Ordinance

The City of Walnut Creek enacted an Inclusionary Housing Ordinance in 2004 to provide additional means to facilitate affordable housing and revised the ordinance in 2010 and performed a nexus study to determine the impact of residential development on affordable housing.\(^1\) The standards for inclusionary housing are set forth in Title 10, Planning and Zoning, of the City’s Municipal Code under Chapter 2, Zoning, Article 9, Inclusionary Housing. As stated in Section 10-2.3.901 the purpose of Article 9 is to facilitate the development and availability of housing affordable to a broad range of households with varying income levels in the city. It is intended in part to implement State policy that declares that local governments have a responsibility to exercise their powers to

\(^1\) City Council Agenda Report, Housing Policy Guidelines, pages 2, June 4, 2013.
facilitate the development of housing to adequately provide for the housing needs of all economic segments of the community, as stated in Government Code Section 65580.

It is also intended to implement the Housing Element of the General Plan which calls for the adoption of an inclusionary housing program to require either production of affordable housing at moderate-, low-, and very-low-income levels or payment of in-lieu and/or impact fees, where applicable, toward affordable housing development. In addition to the allocation of fees, the Inclusionary Housing Ordinance allows for land dedication as an alternative to payment of fees. The goal of this Article is, to the extent legally permissible, to have a minimum percentage of very-low-, low- and/or moderate-income units built within each new residential development or to provide funding for new development of housing affordable to very low, low and moderate income households.

In addition to the fees generated from the Inclusionary Housing Ordinance, the City also receives funding for affordable housing from the following sources:

- Community Development Block Grant (CDBG) Funds
- Commercial Linkage Fees
- Housing Successor Agency loan repayments
- Other City or CDBG housing loan repayments
- Other Grant funds that may be awarded to the City

City of Walnut Creek Relocation Assistance Ordinance

The standards for relocation assistance are set forth in Title 9, Building and Regulation, of the City’s Municipal Code under Chapter 15, Relocation Assistance. Per Section 9-15.03, Chapter 15 applies to any development project that will result in displaced persons, but does not apply to any condominium conversion subject to Title 10, Planning and Zoning Chapter 1, Subdivisions, Article, Common Interest Development (Condominium) Conversion or to any other development project that is subject to a legal requirement for the provision of relocation assistance under any provision of law other than Chapter 15. As stated in Section 9-15.02 the purpose of the City’s Relocation Assistance Ordinance is to mitigate the impact of development projects which displace Low-Income Tenants from their residences by requiring applicants to provide certain limited relocation assistance to such tenants.

4.10.1.2 EXISTING CONDITIONS

This section describes existing conditions related to population, housing, and employment in Walnut Creek. The US Census Bureau’s 2010 Census data presents the most up-to-date demographic profile available for Walnut Creek; however, regional planning initiatives, including Regional Housing Needs Assessment (RHNA), are based on Association of Bay Area Government’s (ABAG’s) Projections 2009. Therefore, both these sets of population and housing data are described below.

TABLE 4.10-1 GOALS AND POLICIES OF THE WALNUT CREEK GENERAL PLAN 2025

<table>
<thead>
<tr>
<th>Goal/Policy Number</th>
<th>Goal/Policy Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 4 Built Environment</td>
<td></td>
</tr>
<tr>
<td>Goal 1</td>
<td>Maintain the balance of open space and public and private land uses existing in Walnut Creek in 2005.</td>
</tr>
<tr>
<td>Policy 1.2</td>
<td>Work to balance the number and types of jobs and the amount and kind of housing available in Walnut Creek.</td>
</tr>
<tr>
<td>Goal 3</td>
<td>Encourage housing and commercial mixed-use development in selected locations that enhances pedestrian access and reduces traffic.</td>
</tr>
<tr>
<td>Policy 3.1</td>
<td>Create opportunities for mixed-use developments.</td>
</tr>
<tr>
<td>Goal 5</td>
<td>Require that infill development is compatible with its surroundings.</td>
</tr>
<tr>
<td>Policy 5.1</td>
<td>Require infill development to be compatible with adjacent and nearby uses.</td>
</tr>
<tr>
<td>Goal 8</td>
<td>Allow development consistent with the density ranges of the General Plan 2025 land use map.</td>
</tr>
<tr>
<td>Policy 8.1</td>
<td>Require that residential projects be developed within the established minimum and maximum density ranges.</td>
</tr>
<tr>
<td>Goal 9</td>
<td>Manage the community’s orderly growth.</td>
</tr>
<tr>
<td>Policy 9.3</td>
<td>Establish a housing cap consistent with the Regional Housing Needs Determination allocation assigned to the City of Walnut Creek and exempt affordable units and density bonus units from the cap. Review the cap every 5 years for its adequacy in meeting the City’s regional housing needs allocation.</td>
</tr>
<tr>
<td>Goal 10</td>
<td>Coordinate the location, intensity, and mix of land uses with transportation resources.</td>
</tr>
<tr>
<td>Policy 10.1</td>
<td>Support the development of medium- and high-density office, residential, and local serving retail near and around the Walnut Creek and Pleasant Hill BART stations (Core Area).</td>
</tr>
<tr>
<td>Goal 12</td>
<td>Make more efficient use of the regional and sub-regional transportation system.</td>
</tr>
<tr>
<td>Policy 12.2</td>
<td>Support infill and redevelopment in existing urban areas.</td>
</tr>
</tbody>
</table>

Source: Walnut Creek General Plan 2025.

Population

The third largest city in Contra Costa County, Walnut Creek had a population of 64,173 in 2010, according to US Census Bureau data. Census data indicate that Walnut Creek’s population declined from 64,296 in 2000 to 64,173 in 2010. With a somewhat more affluent and older population as compared to the rest of Contra Costa County and the region, Walnut Creek including the area that makes up the City’s sphere of influence had an average household size which was a relatively low 2.09 persons per household in 2010, compared to 2.75 for Contra Costa

3 US Census Bureau, 2010, Table DP-1, Profile of General Population and Housing Characteristics: 2010, Geography: City of Walnut Creek, California.
Table 4.10-2 Goals and Policies of the Walnut Creek 2009–2014 Housing Element

<table>
<thead>
<tr>
<th>Goal/Policy Number</th>
<th>Goal/Policy Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal 1</td>
<td>To promote the availability of housing types for all economic segments of the community consistent with the infrastructure and service capacities of the City.</td>
</tr>
<tr>
<td>Policy 1</td>
<td>Encourage a mix of land uses and residential densities in the downtown Core Area to increase the supply of housing;</td>
</tr>
<tr>
<td>Policy 3</td>
<td>Encourage housing and commercial mixed-use development in selected locations that enhances pedestrian access and reduces traffic, particularly in the Core Area, and near public transit.</td>
</tr>
<tr>
<td>Goal 3</td>
<td>Strive to meet Walnut Creek's regional housing needs.</td>
</tr>
<tr>
<td>Policy 20</td>
<td>Strive to meet Walnut Creek's share of regional housing needs.</td>
</tr>
</tbody>
</table>

County as a whole.\(^4\) In 2010, 53.3 percent of households in Walnut Creek were family households, while 46.7 were non-family households, including 39 percent of households composed of individuals living alone.

As shown in Table 4.10-3, ABAG 2009 population, housing, and employment projections, Walnut Creek's population is projected to grow at a modest rate, to a total of 77,400 by 2030.\(^5\) ABAG projects that household size will decrease a small amount (0.5 percent) between 2010 and 2030. As ABAG 2009 projections are used in regional planning efforts, the ABAG numbers are used for the purpose of evaluating environmental impacts in this Draft EIR.

Housing

The 2010 Census data indicates that there were 32,681 housing units in Walnut Creek in 2010.\(^6\) Other recent data points indicate that multiple-family unit construction has increased more rapidly than single-family construction. From 2000 to 2013, multiple-family unit construction increased 6 percent, compared to a 4 percent increase in single-family home construction in Walnut Creek over the same period.\(^7,8\) Most of the multiple-family units built

\(^4\) Association of Bay Area Governments (ABAG). *Projections and Priorities 2009: Building Momentum*, Projections through 2035, Subregional Study Area Table.

\(^6\) US Census Bureau, 2010, Table DP-1, Profile of General Population and Housing Characteristics: 2010, Geography: City of Walnut Creek, California.

Table 4.10-3 ABAG Projections 2009 Population, Households, and Employment Forecasts for Walnut Creek

<table>
<thead>
<tr>
<th></th>
<th>2000</th>
<th>2005</th>
<th>2010</th>
<th>2025</th>
<th>2030</th>
<th>Number</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>64,296</td>
<td>66,200</td>
<td>68,300</td>
<td>75,400</td>
<td>77,400</td>
<td>9,100</td>
<td>13.3</td>
</tr>
<tr>
<td>Households</td>
<td>30,301</td>
<td>31,050</td>
<td>32,230</td>
<td>35,310</td>
<td>36,450</td>
<td>4220</td>
<td>13.1</td>
</tr>
<tr>
<td>Household Size^a</td>
<td>2.10</td>
<td>2.11</td>
<td>2.09</td>
<td>2.10</td>
<td>2.08</td>
<td>-0.01</td>
<td>-0.5</td>
</tr>
<tr>
<td>Jobs^a</td>
<td>62,040</td>
<td>62,140</td>
<td>62,080</td>
<td>70,160</td>
<td>74,070</td>
<td>11,990</td>
<td>19.3</td>
</tr>
<tr>
<td>Employed Residents^a</td>
<td>39,139</td>
<td>38,020</td>
<td>39,890</td>
<td>51,140</td>
<td>54,320</td>
<td>14,430</td>
<td>36.2</td>
</tr>
<tr>
<td>Jobs/Employed Residents Ratio^a</td>
<td>1.59</td>
<td>1.63</td>
<td>1.56</td>
<td>1.37</td>
<td>1.36</td>
<td>-0.2</td>
<td>-12.8</td>
</tr>
</tbody>
</table>

^a Household size, jobs, employed residents, and jobs/employed residents ratio are reported for the city’s Sphere of Influence; other characteristics are for the city limits. Source: ABAG, Projections and Priorities 2009: Building Momentum, Projections through 2035.

are located in the Core Area of the city. In 2000, the City of Walnut Creek contained 14,554 multiple-family units. That number increased to 15,481 in 2013.^9

The City is currently experiencing a surge in development applications for new market rate apartment complexes. The rental vacancy rate has been approximately 3 percent and rents have increased by more than 10 percent over the past year in Walnut Creek. This, combined with the changes in the availability and financing of condominium and ownership units, has led to an increased demand for affordable rental housing. New residential rental developments are required to pay in-lieu housing fees pursuant to the City’s Inclusionary Zoning Ordinance, described above under Section 4.10.1.1, these fees must be utilized to develop new affordable housing; however, the increase in rental housing development means that fewer vacant or underutilized sites are available for affordable housing opportunities in Walnut Creek.

Current market rents are affordable to Above Moderate income levels.^10

Employment

Walnut Creek serves as an important employment center for Contra Costa County and the San Francisco Bay Area. Walnut Creek has a concentration of health care and office jobs. In 2008, Walnut Creek’s major employment sectors were service (43.30 percent), finance (24.16 percent), and retail (19.14 percent).^11 The top employers in Walnut Creek are: John Muir Medical Center, Kaiser Permanente Medical Center, Bank of the West, Central Garden and Pet, City of Walnut Creek, Contra Costa Times, Manor Care Health Services, Target, and The PMI

Group, Inc.12 Detailed employment data from the 2010 Census were not available at the time this Draft EIR was prepared; however, analysis of available employment data from the US census indicates that approximately 54,512 people work in the city of Walnut creek as of 2011.13 Among them, 30.6 percent worked in health care and social assistance sectors and 13.2 percent worked in professional, scientific, and technical services sectors.

Walnut Creek’s employment base grew 68.1 percent in the 1990’s and 2000’s, from a total of 36,929 jobs in 1991 to 62,080 jobs in 2010.14,15 The ABAG projects continued employment growth in Walnut Creek. As shown in Table 4.10-3, the ABAG projects the City will have 74,070 jobs by 2030, which would be an increase of 11,990 positions over the ABAG’s projected 2010 employment level. According to a recent market study, over 12.5 percent of the jobs in Walnut Creek are expected to be retail positions by 2015.16

Walnut Creek is relatively “jobs rich,” with a high number of jobs compared to employed residents, relative to the county. The city including its sphere of influence had a ratio of 1.63 jobs to employed residents in 2005, as compared to 0.82 for Contra Costa County.17 As shown in Table 4.10-3, Walnut Creek’s jobs-to-employed-residents ratio is forecast to decline slightly from 1.56 in 2010 to 1.36 in 2030.

\section{4.10.2 STANDARDS OF SIGNIFICANCE}

An Initial Study was prepared for the proposed Project (see Appendix A of this Draft EIR). Based on the analysis contained in the Initial Study it was determined that development of the proposed Project would not result in significant environmental impacts per the following significance standard and therefore, is not discussed in this chapter.

\begin{itemize}
 \item Induce substantial population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure)?
\end{itemize}

Based on the Initial Study it was determined that the proposed Project would result in a significant impact to population and housing if it would:

1. Displace substantial numbers of existing housing units, necessitating the construction of replacement housing elsewhere.
2. Displace substantial numbers of people, necessitating the construction of replacement housing elsewhere.

12 City of Walnut Creek website, http://www.walnut-creek.org/about/community_profile/demographic_information.asp, accessed October 24, 2013.
14 Association of Bay Area Governments (ABAG). \textit{Projections and Priorities 2009: Building Momentum}, Projections through 2035, Subregional Study Area Table.
15 City of Walnut Creek, 2005, General Plan EIR, page 55.
16 EDAW | AECOM, 2009, \textit{Draft Walnut Creek Transit Village Market Study}.
17 Association of Bay Area Governments (ABAG). \textit{Projections and Priorities 2009: Building Momentum}, Projections through 2035, Subregional Study Area Table.
4.10.3 IMPACT DISCUSSION

This section analyzes potential Project-specific and cumulative impacts to population and housing.

POP-1 The proposed Project would not displace substantial numbers of existing housing, necessitating the construction of replacement housing elsewhere.

The proposed Project would involve the removal of all existing uses on the Project site, including a 10-unit apartment complex, three duplexes (6 units) and four single-family dwelling units for a total of 20 residential units. This represents less than one percent of the housing stock in Walnut Creek and therefore would not constitute a substantial amount of housing. Nonetheless, the removal of on-site housing would result in a decrease of housing units in Walnut Creek and the displacement of over 30 individuals from relatively affordable housing stock, and could require the construction of replacement housing elsewhere.

The proposed Project would result in 178 market-rate rental apartments in the Multi-Family Special High land use designation, which allows up to 50.1 to 100 dwelling units per acre (du/ac). Accordingly, the Project would result in a net increase of 158 dwelling units on the Project site. However, the Project would not include any below market-rate units on-site. Therefore, consistent with the City’s Inclusionary Housing Ordinance, the Project Applicant would pay the City’s established Affordable Housing Impact Fee upon issuance of the building permit for each dwelling or dedicate land for affordable housing as an alternative to payment of fees. The Project Applicant would also be required to provide relocation assistance to households displaced as a result of the Project pursuant to Section 9-15.05 of the Walnut Creek Municipal Code.

Given the payment of the Affordable Housing Impact Fee and the net increase in housing units, combined with the relatively small amount of housing being displaced compared to the overall housing stock in Walnut Creek, no housing would be displaced that would necessitate the construction of replacement housing elsewhere. Therefore, Project impacts on the displacement of housing would be less than significant and no mitigation measures would be required.

Significance Without Mitigation: Less than significant.

POP-2 The proposed Project would not displace substantial numbers of people, necessitating the construction of replacement housing elsewhere.

As discussed in Impact POP-1, the proposed Project would involve the removal of all existing uses on the Project site, including the 20 residential dwelling units. Based on a rate of 2.14 persons per household, the 20 existing residential units are estimated to house approximately 43 residents. This represents less than one tenth of a percent of the population of Walnut Creek and therefore, does not constitute a substantial number of people.

18 This analysis is based on the Association of Bay Area Governments (ABAG) projections of the average household size of 2.14 persons for Walnut Creek in 2025. This is the standard approach for population and housing analysis in Walnut Creek.
While all of the units proposed as a part of the Project will be market-rate apartments, as described in Impact POP-1, the Project would result in a net increase of 158 dwelling units on the Project site. Furthermore, the Project Applicant would pay the City’s established Affordable Housing Impact Fee upon issuance of the building permit for each dwelling unit. Given the payment of the Affordable Housing Impact Fee or the dedication of land and the Project’s net increase in housing units combined with the relatively small amount of housing being displaced compared to the housing stock in Walnut Creek, no people would be displaced that would necessitate the construction of replacement housing elsewhere. Therefore, Project impacts on the displacement of people would be less than significant and no mitigation measures would be required.

Significance Without Mitigation: Less than significant.

4.10.4 CUMULATIVE IMPACTS

POP-3 The proposed Project, in combination with past, present and reasonably foreseeable projects, would result in less than significant cumulative impacts with respect to population and housing.

This section analyzes potential impacts to population and housing that could occur from a combination of the Project and other reasonably foreseeable projects in the surrounding area. The geographic scope of this analysis is taken as the City of Walnut Creek. A cumulative impact would be considered significant if the proposed Project, taken together with past, present, and reasonably foreseeable projects in the city of Walnut Creek, would result in the displacement of either people or housing units. Impacts resulting from the displacement of both people and housing necessitating the construction of replacement housing elsewhere are site-specific and are assessed on a site-by-site basis. The significance of the impacts would depend largely on what, if any, existing housing and residents occur on or near the sites of the related projects identified in Table 4.2-1 in Chapter 4.2, Cumulative Impact Analysis, of this Draft EIR. As shown on Table 4.2-1, with buildout of the related projects a total of 1,661 new residential units would be constructed in Walnut Creek by 2030. Similar to the proposed Project, the determination for the displacement of a substantial number of people and housing would be made on a case-by-case basis and, if necessary, the applicants of the related projects would be required to comply with the City’s Inclusionary Housing Ordinance through either the payment of Affordable Housing Impact Fees, the provision of affordable housing units or dedication of land for affordable housing. In addition, future applicants would also be required to provide relocation assistance to households displaced as a result of their project pursuant to Section 9-15.05 of the Walnut Creek Municipal Code. Thus, given that the proposed Project’s impacts regarding the displacement of housing and people are less than significant, the proposed Project’s impacts in this regard would not be cumulatively considerable. Therefore, cumulative impacts to population and housing would be less than significant and no mitigation measures are required.

Significance Without Mitigation: Less than significant.
4.10.5 SUMMARY OF SIGNIFICANT IMPACTS AND MITIGATION MEASURES

The Project would not result in any significant project-specific or cumulative impacts to Population and Housing and, therefore, no mitigation measures are required.
4.11 PUBLIC SERVICES

This chapter describes public services provided in Walnut Creek and evaluates the potential impacts to public services that could result from development of the proposed Project. An Initial Study was prepared for the proposed Project (see Appendix A of this Draft EIR). Based on the analysis contained in the Initial Study it was determined that development of the proposed Project would not result in a significant environmental impact with regards to school, library and park services; therefore, these topics are not discussed in this chapter. However, impacts to law enforcement and fire protection services were found to be potentially significant and as such are addressed in separate sections of this chapter. In each section, a summary of the relevant regulatory setting and existing conditions are followed by a discussion of Project-specific and cumulative impacts.

4.11.1 FIRE PROTECTION SERVICES

The Contra Costa County Fire Protection District (CCCFPD) provides fire protection and first responder emergency medical services to Walnut Creek and the surrounding unincorporated areas of Contra Costa County. The CCCFPD also works with the California Department of Forestry, Mount Diablo State Park, and the San Ramon Valley Fire District in addressing wildland fire hazards. This section describes existing conditions related to fire and emergency medical services and the potential impacts that could result from development of the proposed Project.

4.11.1.1 REGULATORY FRAMEWORK

State Regulations

California Building Code

The State of California provides a minimum standard for building design through the California Building Code (CBC), which is located in Part 2 of Title 24 of the California Code of Regulations. The CBC is based on the 1997 Uniform Building Code, but has been modified for California conditions. It is generally adopted on a jurisdiction-by-jurisdiction basis, subject to further modification based on local conditions. Commercial and residential buildings are plan-checked by local, City, and County building officials for compliance with the CBC. Typical fire safety requirements of the CBC include: the installation of sprinklers in all high-rise buildings; the establishment of fire resistance standards for fire doors, building materials, and particular types of construction; and the clearance of debris and vegetation within a prescribed distance from occupied structures in wildfire hazard areas.

California Fire Code

The California Fire Code (CFC) incorporates, by adoption, the International Fire Code of the International Code Council, with California amendments. This is the official Fire Code for the State and all political subdivisions. It is located in Part 9 of Title 24 of the California Code of Regulations, which is described in Section B.2.a.ii of the code. The CFC is revised and published every three years by the California Building Standards Commission.
Walnut Creek General Plan 2025

Table 4.11-1, below, enumerates provisions related to fire protection and emergency medical services contained in the Walnut Creek General Plan 2025.

<table>
<thead>
<tr>
<th>Goal/Policy Number</th>
<th>Goal and Policy Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 6, Safety and Noise</td>
<td></td>
</tr>
<tr>
<td>Goal 4</td>
<td>Strive to prevent and reduce damage related to fire hazards.</td>
</tr>
<tr>
<td>Policy 4.2</td>
<td>Work with the Contra Costa County Fire Protection District toward addressing fire response times and other fire-related issues inside the planning area.</td>
</tr>
<tr>
<td>Goal 5</td>
<td>Promote public safety.</td>
</tr>
<tr>
<td>Policy 5.2</td>
<td>Maintain a response time of less than 5 minutes for emergency calls and for other calls less than 20 minutes, 95 percent of the time.</td>
</tr>
</tbody>
</table>

Source: Walnut Creek General Plan 2025.

4.11.1.2 EXISTING CONDITIONS

As of January 2013 the CCCFPD maintains 23 fire stations and employs a staff of 262 personnel. The CCCFPD closed Station 4 in 2013, which resulted in three remaining fire stations within the city limits. The CCCFPD has no plans to add shifts or personnel at this time. Figure 4.11-1 shows the three remaining CCCFPD’s fire stations (Stations 1, 3, and 7) that are located within the city limit and the two stations (Stations 2 and 10) that each cover a 1-mile service area of which, portions are within the city limit. As shown on Figure 4.11-1, the Project site falls within the response area of Fire Station 1, located at 1330 Civic Drive, approximately 0.4 miles east of the Project site. The resources currently allocated to Stations 1, 3 and 7 include a total of four fire engines, one ladder truck and 9 personnel. Fire Station 1 is staffed with a crew of three personnel, and equipped with a Type 1 engine, a Type 3 engine, and one ladder truck.

1 Leach, Ted, Fire Inspector, Contra Costa County Fire Protection District. Personal communication with The Planning Center | DC&E, September 30, 2013.
2 City of Walnut Creek, Walnut Creek General Plan 2025, Chapter 6, Figure 6.
3 Leach, Ted, Fire Inspector, Contra Costa County Fire Protection District. Personal communication with The Planning Center | DC&E, September 30, 2013.
Figure 4.11-1

Fire Stations and Fire Service Areas in Walnut Creek

Note: Station radii depicting response areas are shown for general reference only. Actual response times measured by roadway length. Refer to text for further discussion.

Source: Walnut Creek General Plan 2025.
The CCCFPD responds to all fire and medical emergency calls in Walnut Creek, dispatching personnel from facilities in Walnut Creek, Lafayette, Pleasant Hill, and Concord as needed. The CCCFPD also maintains automatic aid agreements with the San Ramon Valley Fire Department and the Orinda-Moraga Fire Department, which allows the closest fire engine to respond to fire and medical emergencies, regardless of jurisdiction.

The CCCFPD strives to uphold a five-minute primary response time for 90 percent of all service calls. Based on nationally recognized standards, the CCCFPD also strives to maintain the capacity to deploy an initial full alarm assignment within an eight-minute response time for 90 percent of all incidents within its jurisdiction. Currently the CCCFPD is not meeting its primary response time objective, responding to only 20 percent of calls within 5 minutes. As of September 30, 2013, the average CCCFPD-wide response time for all service calls regardless of type was approximately seven minutes,\(^4\) which is one minute more than the average district-wide response time in 2011.\(^5\)

The risk of structural fires within Walnut Creek is low primarily because most buildings are relatively new and in compliance with current fire and building code standards. The CCCFPD Fire Prevention Bureau reviews development plans and inspects construction projects to ensure that all new and remodeled buildings and facilities meet State and local Building and Fire Code requirements.\(^6\) In addition, the CCCFPD implements a vigorous building inspection program to ensure compliance with applicable standards and regulations, including requirements for emergency access. In 2012-2013, the CCCFPD’s General Fund Budget was projected to be $102,313,737.\(^7\) This source funds salaries and benefits, services and supplies, and other expenditures. Portions of property taxes collected within the CCCFPD are directed to the budget’s revenue, as are impact fees levied on new development in the CCCFPD service area. The CCCFPD assesses the following impact fees on new development:

- $285 per residential dwelling unit;
- $376 per 1,000 square feet of office space; and
- $329 per 1,000 square feet of retail/commercial space.

The CCCFPD has no plans to expand existing facilities or construct new ones at this time.\(^8\)

4.11.3 STANDARDS OF SIGNIFICANCE

The propose Project would have a significant impact related to fire protection and emergency services if in order to maintain acceptable service ratios, response times, or other performance objectives for fire and police services, the Project would result in a need for new or physically altered fire protection facilities, the construction or operation of which could cause significant environmental impacts.

\(^4\) Leach, Ted, Fire Inspector, Contra Costa County Fire Protection District. Personal communication with The Planning Center | DC&E, September 30, 2013.

\(^5\) Leach, Ted, Fire Inspector, Contra Costa County Fire Protection District. Personal communication with The Planning Center | DC&E, January 9, 2012.

\(^8\) Leach, Ted, Fire Inspector, Contra Costa County Fire Protection District. Personal communication with The Planning Center | DC&E. September 30, 2013.
4.11.1.4 IMPACT DISCUSSION

| PS-1 | The proposed project would not result in the need for new or physically altered fire protection facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives. |

The Project would have a significant environmental impact if it would exceed the ability of fire and emergency medical responders to adequately serve the Project site, thereby requiring construction of new facilities or modification of existing facilities, the construction of which could cause significant environmental impacts.

The Project is anticipated to generate 2.14 persons per household, which would result in approximately 381 residents for the Project's proposed 178 residential units. Because the proposed Project would result in new population and residential development on a site that is currently limited to 20 residential units and approximately 43 residents, the Project would represent a more intense use of the site. Although the relationship is not directly proportional, more intense uses of land typically result in the increased potential for fire and emergency incidents. Thus, the Project would create an increased demand for fire protection services.

Consistent with General Plan Action 4.2.1, which requires the City to submit all new development or redevelopment plans to the fire district for review, the preliminary Project site plans have been reviewed and approved by the CCCFPD. Emergency response vehicles would access the Project site from Ygnacio Valley Road to the north and Lacassie Avenue to the south. An emergency response vehicle staging area with adequate turning radius for emergency response vehicles is located at the western end of Lacassie Avenue. The staging area meets the standards of the CCCFPD's and the City's Fire Code. Under the proposed Project, the existing on-site fire hydrant would be relocated closer to the access point and two additional fire hydrants would be installed along the Ygnacio Valley Road emergency vehicle response access area. See Figure 3-14 in Chapter 3, Project Description, of this Draft EIR.

Although the CCCFPD has generally maintained the same response times since 2011, the CCCFPD is currently not meeting its target response time and the additional 338 residents on the Project site could result in an increased number of service calls, which could increase the need for additional service levels. Additionally, the CCCFPD has recently closed Station 4 and currently has no plans for the construction of additional facilities or acquisition of additional equipment to accommodate the proposed Project. However, the review of the Project by CCCFPD assures conformance with the most recent CBC and CFC, which includes requirements regarding adequate fire flows, width of emergency access routes, turning radii, automatic sprinkler systems, fire alarms, and other requirements for emergency access routes, some of which are described above. Moreover, while the Project

9 Chip Griffin, Associate Planner, City of Walnut Creek. Personal communication with The Planning Center | DC&E, October 31, 2013.
10 Walnut Creek Municipal Code Title 9 (Building Code), Chapter 19 (Fire Code).
11 Leach, Ted, Fire Inspector, Contra Costa County Fire Protection District. Personal communication with The Planning Center | DC&E, September 30, 2013.
12 Chip Griffin, Associate Planner, City of Walnut Creek. Personal communication with The Planning Center | DC&E, October 31, 2013.
would increase the number and frequency of calls for service by the CCCFPD, because the Project site would be located approximately 0.6 miles from Fire Station 1, response times for many calls from the Project site would be expected to fall within the CCCFPD’s goal of 5 minutes. Although the response time for some calls for service would be expected to exceed the 5-minute goal, the CCCFPD has determined that the proposed Project would not require the construction or expansion of CCCFPD facilities as a result of the proposed Project.13

In addition, the Project Applicant would be required to pay the developer impact fees per the CCCFPD requirements. The payment of these fees would defray the cost for facility improvements, equipment, or other needs necessary for maintaining or improving services as needed to accommodate the increase in service population.14

Therefore, considering the Project as a whole, including the Project's design features, proximity to Fire Station 1, compliance with mandatory regulations, and the payment of developer impact fees, constructing new or expanded facilities or adding new personnel as a result of the construction and occupation of the proposed Project would not be necessary to maintain acceptable service ratios, response times, or other performance objectives for fire protection services. Accordingly, Project impacts related to fire protection services would be less than significant and no mitigation measures are required.

Significance Without Mitigation: Less than significant.

4.11.1.5 CUMULATIVE IMPACTS

| PS-2 | The proposed Project, in combination with past, present and reasonably foreseeable projects, would result in less than significant cumulative impacts with respect to fire protection services. |

A significant cumulative environmental impact would result if, in combination with other past, present, and reasonably foreseeable projects, buildout of the proposed Project would exceed the ability of fire and emergency medical responders to adequately serve the vicinity, thereby requiring construction of new facilities or modification of existing facilities. This section analyzes potential impacts to fire protection services that could occur as a result of the proposed Project in combination with reasonably foreseeable growth. For the purposes of this analysis the area of cumulative effect will be considered the service area of the CCCFPD, which as discussed above includes Walnut Creek and surrounding unincorporated areas of Contra Costa County.

13 Leach, Ted, Fire Inspector, Contra Costa County Fire Protection District. Personal communication with The Planning Center | DC&E, December 17, 2013.

14 Leach, Ted, Fire Inspector, Contra Costa County Fire Protection District. Personal communication with The Planning Center | DC&E, December 18, 2013.
As discussed above, the CCCFPD is not currently meeting the established district-wide target response time. An increase in service population resulting from cumulative residential and commercial development in the CCCFPD service area, including the proposed Project, would incrementally compound this situation. However, as with the proposed Project, new residential and commercial development in the CCCFPD service area would be required to undergo review by the CCCFPD and comply with the most recent CBC and CFC, which includes requirements regarding adequate fire flows, width of emergency access routes, turning radii, automatic sprinkler systems, fire alarms, and other requirements for emergency access routes. Furthermore, new residential and commercial development in the CCCFPD service area would be required to pay development impact fees, which would defray the cost for facility improvements, equipment, or other needs necessary for maintaining or improving services as needed to accommodate the increase in service population. Although CCCFPD has no plans for the construction or expansion of facilities to house additional personnel or equipment, were such construction or expansion to occur, it would be subject to separate CEQA review, thereby providing an opportunity to identify and mitigate associated environmental impacts. As such, buildout of the proposed Project, in combination with other past, present, and reasonably foreseeable projects in the CCCFPD service area would result in a less-than-significant impact.

Significance Without Mitigation: Less than significant.

4.11.6 SUMMARY OF SIGNIFICANT IMPACTS AND MITIGATION MEASURES

The proposed Project would not result in any significant Project-specific or cumulative impacts to fire protection services and therefore no mitigation measures are required.

4.11.2 POLICE PROTECTION SERVICES

4.11.2.1 REGULATORY FRAMEWORK

Walnut Creek General Plan 2025

Table 4.11-2, below, enumerates provisions related to police protection contained in the Walnut Creek General Plan 2025.

15 Leach, Ted, Fire Inspector, Contra Costa County Fire Protection District. Personal communication with The Planning Center | DC&E, December 18, 2013.
TABLE 4.11-2 GOALS AND POLICIES OF THE WALNUT CREEK GENERAL PLAN 2025

<table>
<thead>
<tr>
<th>Goal/Policy Number</th>
<th>Goal and Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 6 Safety and Noise</td>
<td></td>
</tr>
<tr>
<td>Goal 5</td>
<td>Promote public safety.</td>
</tr>
<tr>
<td>Policy 5.2</td>
<td>Maintain a response time of less than 5 minutes for emergency calls and for other calls less than 20 minutes, 95 percent of the time.</td>
</tr>
<tr>
<td>Policy 5.3</td>
<td>Support Community Oriented Policing.</td>
</tr>
<tr>
<td>Policy 5.5</td>
<td>Seek ways to reduce police service demands through Project design enhancements.</td>
</tr>
</tbody>
</table>

Source: Walnut Creek General Plan 2025.

4.11.2.2 EXISTING CONDITIONS

Walnut Creek Police Department

The Walnut Creek Police Department (WCPD) is a full-service municipal police agency which provides police protection services for the city of Walnut Creek. The department embraces a community policing model of service that promotes police-community partnerships and proactive problem solving.16

With a staff made up of 165 employees comprised of 77 sworn officers, 34 civilian personnel, 32 volunteers in Police Services, and 22 Volunteer Reserve Police Officers the WCPD provides 24-hour-a-day patrol services and responds to calls for service, based on the priority and on geographical areas, called sectors, within its jurisdiction. The Project site is located within patrol Sector 2, which encompasses most of the traditional downtown area and the corridor along N. Main Street to the Pleasant Hill border.17

The WCPD prioritizes calls for police services as follows: Priority 1 calls involve life-threatening situations; Priority 2 calls are not life-threatening but necessitate immediate response; all other calls are designated Priority 3. The WCPD response time standard is 5 minutes for Priority 1, 7 minutes for Priority 2, and 30 minutes for Priority 3 calls. In 2011, the WCPD received a total of 44,241 calls for service city-wide. The average total response time for Priority 1 calls was 4:58 minutes, while the average total response time for Priority 2 and 3 calls were 7:25 minutes and 19:08 minutes respectively. In 2012 the WCPD received a total of 43,336 calls for service city-wide. The average total response time for Priority 1 calls was 4:42 minutes, while the average total response time for Priority 2 and 3 calls were 7:50 minutes and 19:55 minutes respectively.18 Thus, the Police Department currently is

17 Gorski, Steve, Walnut Creek Police Department. Personal e-mail communication with The Planning Center | DC&E, September 25, 2013.
18 Gorski, Steve, Walnut Creek Police Department. Personal e-mail communication with The Planning Center | DC&E, September 25, 2013.
meeting the response times identified in the General Plan 2025. Response time data provided by the WCPD has been included in Appendix E, Public Service Data, of this Draft EIR.

In 2012, the WCPD had an authorized staffing level of 77 officers. Additionally, the WCPD staff included 34 civilian employees, 32 volunteers in Police Services, and 22 Volunteer Reserve Police Officers. The WCPD works to balance response time and patrol time, and achieve approximately 40 percent of an officer’s time on patrols and self-initiated activity. Considering different staffing measures, the unique service demands of the growing downtown, and the patrol time goal, in 2007 the WCPD projected a need to add five full-time officers over the next two budget cycles. However, due to budget constraints, WCPD staffing levels decreased from 80 sworn officers in 2007 to 76 in 2011, in spite of increasing demand for police services. As a result, the WCPD has cut services in some cases by not responding to lower priority calls (e.g., non-injury accidents) due to a lack of resources. In 2012 the police department again identified a need to increase staffing levels but has been unable to do so due to budget constraints and a competitive hiring environment. 19

4.11.2.3 STANDARDS OF SIGNIFICANCE

The proposed Project would have a significant impact related to police protection and emergency services if in order to maintain acceptable service ratios, response times, or other performance objectives for police services, the Project would result in a need for new or physically altered police protection facilities, the construction or operation of which could cause significant environmental impacts.

4.11.2.4 IMPACT DISCUSSION

| PS-3 | The proposed Project would not require expanded facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times, or other performance objectives for police services. |

A significant environmental impact would result if development of the Project would necessitate the need for construction or operation of new or physically altered police facilities. As previously discussed under fire protection services impacts, the Project is anticipated to result in approximately 338 new residents and 158 new units over the existing conditions (i.e., 20 units and 43 residents), which represents a more intense use of the site. Similar to fire protection services, the more intense uses of land typically result in the increased potential for police and emergency incidents. Thus, the Project would create an increased demand for law enforcement services.

The crime rate, which represents the number of crimes reported, affects the “needs” projection for staff and equipment for the WCPD. A number of factors contribute to the resultant crime rate, such as police presence, crime prevention measures, and on-going legislation/funding. Therefore, the potential for increased crime rates is not necessarily directly proportional to increases in population or development. According to the response time

19 Gorski, Steve, Walnut Creek Police Department. Personal e-mail communication with The Planning Center | DC&E, September 25, 2013.
data provided by the WCPD for 2011 and 2012, overall calls for service slightly decreased from 44,241 to 43,336 and the WCPD is currently meeting the response times identified in the General Plan 2025, as described above.

While the Project would increase the number of persons and level of activity on the Project site, given the Project site is currently developed with 20 residential units and is surrounded by residential, commercial and transit land uses, it is reasonable to expect that the Project would not result in a meaningful increase in the amount of crime in the Project area. Accordingly, the effect that the Project would have on response times would be minimal.

Further, while according to the WCPD additional police equipment and staff may be necessary to accommodate the Project, the additional demand for police services created by the Project would not require the need for new or altered police facilities. Therefore, Project impacts to police services would be less than significant and no mitigation measures are warranted.

Significance Without Mitigation: Less than significant.

4.11.2.5 CUMULATIVE IMPACTS

The proposed Project, in combination with past, present and reasonably foreseeable projects, would result in less than significant cumulative impacts with respect to police services.

A significant cumulative environmental impact would result if, in combination with other past, present, and reasonably foreseeable projects, buildout of the proposed Project would exceed the ability of police responders to adequately serve the vicinity, thereby requiring construction of new facilities or modification of existing facilities. This section analyzes potential impacts to police protection services that could occur from the Project in combination with reasonably foreseeable growth. For the purposes of this analysis the area of cumulative effect will be considered the service area of the WCPD, which as discussed above includes the area within the city limits of Walnut Creek.

Subject to the provisions of the Walnut Creek Growth Management Program, cumulative projects identified in Chapter 4.2, Environmental Evaluation, of this Draft EIR would add approximately 407,270 square feet of commercial/office space and approximately 1,008 new dwelling units by 2016. Including these increases up to 2016, 523,959 square feet of commercial space, and 1,661 residential units are projected to be added up to 2030. The corresponding increase in average daily population would create the need for additional police protection services. However, continued implementation of the City’s Growth Management Program, as described in Chapter 4.9, Land Use and Planning, of this Draft EIR, would ensure that this development is incremental, in metered amounts. The WCPD would continue to evaluate the need for new for expanded facilities in the future, if the need arose, and based on the potential service population from the cumulative projects. The need for expansion of police facilities may be necessary. However, the WCPD has not identified a need for new or expanded facilities to accommodate the increase in demand for police protection services. The WCPD offices and command centers are

20Gorski, Steve, Walnut Creek Police Department. Personal e-mail communication with The Planning Center | DC&E, October 19, 2013.
strategically located to accommodate service calls, and the department would continue to explore ways to retrofit or upgrade current facilities in order to accommodate increased demand in the future. Accordingly, the proposed Project’s contribution would not be cumulatively considerable and cumulative impacts to police services would be less than significant.

Significance Without Mitigation: Less than significant.

4.11.2.6 SUMMARY OF SIGNIFICANT IMPACTS AND MITIGATION MEASURES

The project would not result in any significant project-specific or cumulative impacts to police protection services and therefore no mitigation measures are required.
4.12 TRANSPORTATION AND TRAFFIC

This chapter describes the regulatory framework and existing conditions in the Project area related to transportation and traffic, and the potential impacts of the Project on transportation and traffic. The analysis contained in this chapter is based on the Transportation Impact Study (TIS) prepared by Fehr & Peers, which is included in Appendix H of this Draft EIR.

4.12.1 TERMINOLOGY

The operations of roadway facilities are typically described with the term “level of service,” abbreviated as LOS. The level of service is a qualitative description of traffic flow from a driver’s perspective, based on factors such as speed, travel time, delay, and freedom to maneuver. Six levels of service are defined ranging from LOS A (best operating conditions) to LOS F (worst operating conditions). LOS E corresponds to operations “at capacity.” When volumes exceed capacity, stop-and-go conditions result and operations are designated as LOS F.

Volume to capacity ratio (V/C) is another measure of the level of service or adequacy of roadways, intersections, or transit services. It is commonly used to express level of service during peak periods of travel. The V/C ratio is a comparison of traffic volume to capacity. As used in this Draft EIR, a V/C ratio of 1.0 or greater denotes a congested (LOS E) or failing (LOS F) facility, with long delays. Table 4.12-1 summarizes the relationship between the V/C ratio and level of service for signalized intersections.

Corridor travel times can also be used to describe the performance of an arterial roadway, by comparing the travel time during the congested peak hour(s) to the non-congested travel time. This analysis method is appropriate for congested corridors such as Ygnacio Valley Road where individual intersections may operate poorly, especially for some of the side-street movements, but travel time through the corridor is minimized through traffic metering and signal timing progression.

The operation of the Ygnacio Valley Road corridor between Oak Grove Road and the Interstate-680 (I-680) Southbound On-Ramp is analyzed according to the Delay Index methodology outlined in the December 29, 2011 memo prepared by Dowling Associates. Thus, intersection service levels are not individually calculated for intersections 2 through 4, described below, in the Project vicinity.

4.12.2 METHODOLOGY

This section presents the methods used to determine the traffic conditions for each scenario described below. It includes descriptions of the data requirements, the analysis methodologies, and the applicable level of service standards.
Table 4.12-1 Signalized Intersection Level of Service Criteria

<table>
<thead>
<tr>
<th>LOS</th>
<th>Description</th>
<th>Sum of Critical V/C Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Progression is extremely favorable and most vehicles arrive during the green phase. Most vehicles do not stop at all. Short cycle lengths may also contribute to low delay.</td>
<td>< 0.60</td>
</tr>
<tr>
<td>B</td>
<td>Progression is good, cycle lengths are short, or both. More vehicles stop than with LOS A, causing higher levels of average delay.</td>
<td>0.61 – 0.70</td>
</tr>
<tr>
<td>C</td>
<td>Higher congestion may result from fair progression, longer cycle lengths, or both. Individual cycle failures may begin to appear at this level, though many vehicles still pass through the intersection without stopping.</td>
<td>0.71 – 0.80</td>
</tr>
<tr>
<td>D</td>
<td>The influence of congestion becomes more noticeable. Longer delays may result from some combination of unfavorable progression, long cycle lengths, and/or high V/C ratios. Many vehicles stop, and the proportion of vehicles not stopping declines. Individual cycle failures are noticeable.</td>
<td>0.81 – 0.90</td>
</tr>
<tr>
<td>E</td>
<td>This level is considered by many agencies to be the limit of acceptable delay. High delay values generally indicate poor progression, long cycle lengths, and high V/C ratios. Individual cycle failures are frequent occurrences.</td>
<td>0.91 – 1.00</td>
</tr>
<tr>
<td>F</td>
<td>This level is considered unacceptable with oversaturation, which is when arrival flow rates exceed the capacity of the intersection. This level may also occur at high V/C ratios below 1.0 with many individual cycle failures. Poor progression and long cycle lengths may also be contributing factors to such delay levels.</td>
<td>> 1.00</td>
</tr>
</tbody>
</table>

Source: Technical Procedures (Contra Costa Transportation Authority, 1997 and 2006.)

4.12.2.1 DATA REQUIREMENTS

The traffic volumes associated with the Project were estimated using a three-step process:

- **Trip Generation.** The amount of vehicle traffic entering and exiting the Project site was estimated, taking into consideration travel by walking, biking, and transit use by project residents and guests.

- **Trip Distribution.** The direction trips use to approach and depart the site was projected.

- **Trip Assignment.** Trips were then assigned to specific roadway segments and intersection turning movements.

4.12.2.2 STUDY INTERSECTIONS

The Project site is located on the south side of Ygnacio Valley Road between Oakland Boulevard and North California Boulevard, as shown on Figure 4.12-1. The TIS, included as Appendix H of this Draft EIR, included an analysis of weekday peak hour traffic operations during 7:00 a.m. – 9:00 a.m. and evenings from 4:00 p.m. – 6:00 p.m. For the intersections on Ygnacio Valley Road, corridor travel time was evaluated from I-680 to Oak Grove Road, as shown in Figure 4.12-2. Non-Ygnacio Valley Road intersections levels of service were calculated using the Contra Costa Transportation Authority level of service methodology.¹,²

¹ Contra Costa County Transportation Authority, Technical Procedures Update, Final, July 19, 2006.
² Contra Costa County Transportation Authority, Technical Procedures, January 16, 2013.
Figure 4.12-1
Project Site Vicinity and Study Intersection Locations

Figure 4.12-2
Ygnacio Valley Road Corridor
The local roadway network in the vicinity of the Project site includes the following key intersections shown on Figure 4.12-1 that would be affected by traffic associated with the proposed Project:

1. Ygnacio Valley Road/I-680 Southbound On-Ramp
2. Ygnacio Valley Road/I-680 Northbound Off-Ramp/Oakland Boulevard
3. Ygnacio Valley Road/North California Boulevard
4. Ygnacio Valley Road/North Main Street
5. North California Boulevard/Parkside Drive
6. North California Boulevard/Lacassie Avenue
7. North California Boulevard/Cole Avenue
8. North California Boulevard/Civic Drive/Trinity Avenue
10. Mount Diablo Boulevard/Bonanza Street
11. California Boulevard/Mount Diablo Boulevard
12. Olympic Boulevard/I-680 Northbound Ramps
14. Olympic Boulevard/Alpine Road
15. South California Boulevard/Olympic Boulevard

For each of the study intersections, the following scenarios were evaluated:

- **Existing With Project.** Existing (2013) conditions with Project-related traffic.
- **Baseline.** Near-term conditions (2016), which consider existing traffic plus anticipated traffic from approved projects that would substantially affect the volumes at study intersections.
- **Baseline With Project.** Near-term conditions with Project-related traffic.
- **Cumulative Without Project.** Future (2030) forecast conditions, which considers local and regional traffic growth. No roadway improvements in the immediate Project vicinity are assumed.
- **Cumulative With Project.** Future forecast conditions with Project-related traffic.

4.12.2.3 SIGNALIZED INTERSECTIONS

Operations of the signalized study intersections, with the exception of intersections 2, 3, and 4 on Ygnacio Valley Road, were evaluated using the level of service calculation method developed by the Contra Costa County Transportation (CCTA), known as CCTALOS. This method uses various intersection characteristics, such as traffic volumes, lane geometry, and signal phasing, to estimate an intersection’s V/C ratio. Table 4.12-1 shows the relationship between the V/C ratio and for signalized intersections.³

³Although the January 2013 update to the CCTA Technical Procedures recommends the use of the 2010 Highway Capacity Manual (HCM) methodology for signalized intersection analysis, use of the CCTALOS method is still allowed “when the calculation is being compared to an Multimodal Transportation Service Objective (MTSO) or other standards that was established using the methodology previously adopted by the authority (CCTALOS).” As such, the City of Walnut Creek is continuing to use the CCTALOS methodology while it develops new Traffic Impact Study guidelines.
At the request of Caltrans, analysis of intersections at freeway ramps, which include intersection 1, 2, 11, 14, and 15, were based on the Highway Capacity Manual methodology. Although these analyses were not used in the impact evaluation, they are provided in Appendix H of this Draft EIR.

4.12.2.4 UNSIGNALIZED INTERSECTIONS

The City of Walnut Creek does not have adopted significance criteria for unsignalized intersections as of the time of this Draft EIR. Therefore, the 2010 Highway Capacity Manual methodology was used to evaluate unsignalized intersections. The level of service of unsignalized intersections is calculated based on the average delay per vehicle, and operations are defined by the average control delay per vehicle (measured in seconds) for each stop-controlled movement or movement that must yield the right-of-way.

At four-way stop-controlled intersections, the movement with the highest delay is calculated for the entire intersection and for each approach. The delays and corresponding level of service for the entire intersection are reported. At one-way and two-way stop-controlled intersections, the movement with the highest delay and level of service is reported in addition to delay and level of service for the entire intersection. The North California/Cole Avenue intersection is the only unsignalized intersection and is two-way stop-controlled.

<table>
<thead>
<tr>
<th>LOS</th>
<th>Description</th>
<th>Delay (Seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Little or no delays</td>
<td>< 10.0</td>
</tr>
<tr>
<td>B</td>
<td>Short traffic delays</td>
<td>> 10.0 to 15.0</td>
</tr>
<tr>
<td>C</td>
<td>Average traffic delays</td>
<td>> 15.0 to 25.0</td>
</tr>
<tr>
<td>D</td>
<td>Long traffic delays</td>
<td>> 25.0 to 35.0</td>
</tr>
<tr>
<td>E</td>
<td>Very long traffic delays</td>
<td>> 35.0 to 50.0</td>
</tr>
<tr>
<td>F</td>
<td>Extreme traffic, delays where intersection capacity exceeded</td>
<td>> 50.0</td>
</tr>
</tbody>
</table>

4.12.2.5 DELAY INDEX

The intersections along Ygnacio Valley Road are subject to the significance criteria for Routes of Regional Significance, which are based on the Delay Index calculations. The Delay Index calculations were established as part of the Measure C growth management program, discussed in Section 4.12.3.1 Regulatory Framework of this Draft EIR. The Delay Index is expressed as the ratio of “congested” travel time divided by “uncongested” time.
Along Ygnacio Valley Road, “congested” travel time is measured as the average travel time during the congested AM (7:00 a.m. – 9:00 a.m.) and PM (4:00 p.m. – 6:00 p.m.) peak hours. The “uncongested” travel time is chosen based on the lowest surveyed travel time during the AM and PM peak hours.

4.12.2.6 Freeway Operations

Freeway operations were analyzed for the following freeway segments and accompanying on- and off-ramps:

- I-680 between Ygnacio Valley Road and Main Street
- I-680 between Ygnacio Valley Road and Mount Diablo Boulevard
- I-680 between Mount Diablo Boulevard and Olympic Boulevard

The analysis includes merge and diverge analyses at the ramps as described in the Caltrans Guide for the Preparation of Traffic Impact Studies. The TIA assigned a level of service to the average vehicle density along each freeway segment. Average vehicle density reflects both congestion and speed experienced by motorists. Table 4.12-3 describes the level of service associated with freeway segment density and ramp merge-diverge density, both expressed in passenger cars per hour per lane.

<table>
<thead>
<tr>
<th>LOS</th>
<th>Freeway Segment Density</th>
<th>Ramp Merge-Diverge Density</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(cars per hour / per lane)</td>
<td>(cars per hour / per lane)</td>
</tr>
<tr>
<td>A</td>
<td>< 11.0</td>
<td>< 11.0</td>
</tr>
<tr>
<td>B</td>
<td>> 11.0 and < 18.0</td>
<td>> 10.0 and < 20.0</td>
</tr>
<tr>
<td>C</td>
<td>> 18.0 and < 20.0</td>
<td>> 20.0 and < 28.0</td>
</tr>
<tr>
<td>D</td>
<td>> 26.0 and < 35.0</td>
<td>> 28.0 and < 35.0</td>
</tr>
<tr>
<td>E</td>
<td>> 35.0 and < 45.0</td>
<td>> 35.0</td>
</tr>
<tr>
<td>F</td>
<td>< 45.0</td>
<td>Demand exceeds capacity when queues begin to form (Demand exceeds capacity)</td>
</tr>
</tbody>
</table>

4.12.2.7 Roadway Level of Service Standards

The Walnut Creek General Plan 2025 establishes that operations of signalized City intersections not on Routes of Regional Significance are evaluated using the level of service standards shown in Table 4.12-4. The standards shown on the table are derived from a calculation method developed by the CCTA, which uses various intersection characteristics (such as traffic volumes, lane geometry, and signal phasing) to estimate an intersection’s V/C ratio.
TABLE 4.12-4 ROADWAY LEVEL OF SERVICE STANDARDS

<table>
<thead>
<tr>
<th>Roadway Classification</th>
<th>Walnut Creek General Plan Standard</th>
<th>CCTALOS Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collectors: Streets and Intersections</td>
<td>LOS: Low D</td>
<td>LOS D</td>
</tr>
<tr>
<td>V/C ratio = 0.80 to 0.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arterials: Streets and Intersections</td>
<td>LOS: High D</td>
<td>LOS D</td>
</tr>
<tr>
<td>V/C ratio = 0.85 to 0.89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regional Corridors: Streets and Intersections on Ygnacio Valley Road</td>
<td>Delay Index: 2.0</td>
<td>LOS F</td>
</tr>
<tr>
<td>Peak Hour Avg. Speed: 15 mph</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sources: Walnut Creek General Plan 2025; Central Contra Costa 2000 Action Plan.

4.12.3 ENVIRONMENTAL SETTING

4.12.3.1 REGULATORY FRAMEWORK

This section summarizes key federal, State, County, and City statutes, regulations, and policies that would apply to the proposed Project. The information provides context for the impact discussion related to the proposed Project’s consistency with applicable regulatory conditions.

Federal Regulations

Federal Highway Administration

The Federal Highway Administration (FHWA) is the agency of the United States (U.S.) Department of Transportation (DOT) responsible for the federally funded roadway system, including the interstate highway network and portions of the primary State highway network, including I-680.

Regional Regulations

Contra Costa Transportation Authority Congestion Management Program

The local Congestion Management Program (CMP) requires each jurisdiction in the County to identify existing and future transportation facilities that would operate below an acceptable service level, and to provide mitigation where future growth would degrade that service level. According to State legislation, introduced as Proposition 111 in 1990, which required urbanized counties to create CMPs to qualify for a share of gas tax revenues, all CMP’s must include the following elements: system definition and traffic level of service standard, trip reduction and transportation demand management, land use impact analysis, and capital improvement. The proposed Project is within the boundaries of the 2011 Contra Costa Congestion Management Program, adopted November 16, 2011, and administered by the CCTA.
The CCTA was established to implement Measure C, discussed below, and its overall goals. Local jurisdictions work through their respective Regional Transportation Planning Committees. For central Contra Costa County, the Transportation Partnership and Cooperation Committee (TRANSPAC) developed the Central Contra Costa Action Plan (Action Plan), which identified traffic service objectives (TSOs) for Routes of Regional Significance (RRS), including Ygnacio Valley Road in Walnut Creek. Key to this plan was an understanding that central Contra Costa County was almost completely built out—with most additional growth taking the form of infill development—and a recognition that the limited future ability to extend or expand the capacity of roads requires an emphasis on demand and efficiency.

Contra Costa County Measures C and J

Measure C

In 1988, Contra Costa County voters passed Measure C, which raised the sales tax rate to provide funding for regional transportation improvements. Measure C requires local jurisdictions to adopt and implement a growth control program in order to receive their share of funds for new transportation projects and maintenance.

Measure C funded and established a Growth Management Program (GMP) which establishes a cooperative, multi-jurisdictional planning process requiring participation from all cities and towns, and the County in managing the impacts of growth in Contra Costa County. The GMP overlaps considerably with the CMP in that it sets standards for regional and non-regional routes in Contra Costa County. These standards are tied to land use, and provide for a tiered system, using different standards for different types of streets.

As part of the adoption of the Walnut Creek General Plan 2025, the City adopted a corridor performance measure Delay Index for Ygnacio Valley Road, consistent with the CCTA Action Plan adopted as part of the Measure C countywide program for Routes of Regional Significance.4

Measure J

Approved by the voters in 2004, Measure J authorized the extension of Measure C and established the Transportation Sales Tax Expenditure Plan, which extended the transportation sales tax initially authorized by the passage of Measure C.

The transportation analysis in this document was prepared in accordance with CCTA’s Technical Procedures, which were developed to assist local agencies in implementing the GMP.

Contra Costa Transportation Authority Countywide Bicycle and Pedestrian Plan

Adopted in October 2009, the Contra Costa Transportation Authority Countywide Bicycle and Pedestrian Plan (CCTABPP) outlines existing conditions of bicycle and pedestrian facilities, as well as goals and policies to improve the bicycle and pedestrian transportation system throughout Contra Costa County with the ultimate goal of reducing traffic, air pollution, and energy consumption, while also improving the health and quality of life for

4 See General Plan 2025, Chapter 5, Transportation, Goal 3, Policy 3.1 requiring compliance with Figure 2, Walnut Creek Roadway Level of Service Standards
its residents and communities. The current 2009 CCTABPP serves as an update to the previous 2003 plan, and reflects important changes such as the passing of Measure J, which extends the county’s half-cent sales tax for pedestrian improvements, increased public support for non-motorized transportation, and the completion of several pedestrian and bicycle projects identified in the 2003 Countywide Bicycle and Pedestrian Plan.

The CCTABPP identifies the importance of providing access to public transit for pedestrians. Given the proposed Project’s close proximity to the Walnut Creek Bart Station, and the focus on providing access to nearby transit facilities, the CCTABPP encourages providing sufficient bicycle parking spaces to allow for commuters and other travelers to park their bicycles in safe and secure locations.

Local Regulations

City of Walnut Creek General Plan 2025

Local Roadway System

General Plan 2025 provides the following description of the functional classification hierarchy of City streets:

- **Routes of Regional Significance** are the major roadway and freeway corridors that serve regional traffic, as identified in Action Plans adopted by the Contra Costa Transportation Authority as part of the countywide Measure C program. Facilities within Walnut Creek designated as Routes of Regional Significance are Ygnacio Valley Road, Treat Boulevard, Geary Road, North Main Street (from I-680 to the north city limits) and Pleasant Hill Road.

- **Arterials** provide intra-city travel and access to the regional roadway network. Arterials in Walnut Creek include California Boulevard, Broadway, Tice Valley Boulevard, Olympic Boulevard, Mt. Diablo Boulevard, Bancroft Road, and Oak Grove Road, which provide connections between Walnut Creek and the surrounding communities of Concord, Pleasant Hill, Lafayette, and Alamo.

- **Collectors** provide access within and between neighborhoods, and carry trips from Local Streets to Arterials. Collectors in the city include Boulevard Way, La Casa Via, San Luis Road, Buena Vista Avenue, Walnut Boulevard, and San Carlos Drive.

- **Local Streets** are roadways not otherwise classified. They provide direct access to fronting properties. Travel speeds and traffic volumes are generally low on these streets.

Corridor Performance Standards

The Delay Index is the ratio of travel time during a commute AM and PM peak hours. For routes of regional significance, such as Ygnacio Valley Road, the Delay Index standard is 2.0 or lower during peak hours, meaning that it does not take more than twice as long to travel the corridor during peak hours as opposed to non-peak hours.

The Delay Index for Ygnacio Valley Road is calculated based on actual travel time surveys of the corridor from Oak Grove Road to I-680 for each direction of travel. Multiple travel time surveys, where analysts drive the corridor and record travel times throughout the peak period on different days, were conducted for each direction of travel and the average travel time during peak periods was used as the basis for the Delay Index calculations.

Synchro files that replicate existing and future intersection and corridor operations are used to determine travel time changes associated with increased traffic from land use developments, the effects of signal timing changes or additional roadway enhancements. Additional details related to the Delay Index calculation method are included in Appendix H of this Draft EIR.

General Plan 2025 Goals, Policies, and Actions

The Walnut Creek General Plan contains the following goals, policies, and action statements related to transportation (Table 4.12-5).

<table>
<thead>
<tr>
<th>Goal / Policy / Action Number</th>
<th>Goal / Policy / Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 2 – Quality of Life</td>
<td></td>
</tr>
<tr>
<td>Goal 8</td>
<td>Make Walnut Creek a community accessible to all.</td>
</tr>
<tr>
<td>Chapter 4 – Built Environment</td>
<td></td>
</tr>
<tr>
<td>Goal 10</td>
<td>Coordinate the location, intensity, and mix of land uses with transportation resources.</td>
</tr>
<tr>
<td>Goal 11</td>
<td>Create a balanced, safe, and efficient regional and subregional transportation system.</td>
</tr>
<tr>
<td>Policy 11.2</td>
<td>Implement Measure C and plan for the implementation of Measure J.</td>
</tr>
<tr>
<td>Goal 12</td>
<td>Make more efficient use of the regional and subregional transportation system.</td>
</tr>
<tr>
<td>Policy 12.1</td>
<td>Promote the use of carpools and vanpools.</td>
</tr>
<tr>
<td>Policy 19.2</td>
<td>Improve directional signage for pedestrians and vehicles in the Core Area.</td>
</tr>
<tr>
<td>Chapter 5 - Transportation</td>
<td></td>
</tr>
<tr>
<td>Goal 3</td>
<td>Maintain a transportation network that provides mobility for all ages and abilities and for all areas of the community.</td>
</tr>
<tr>
<td>Policy 3.1</td>
<td>Maintain the level of service standards for roadways shown in Figure 2 of the Walnut Creek General Plan for the City’s transportation network.</td>
</tr>
<tr>
<td>Goal 6</td>
<td>Provide a safe and attractive walking environment accessible to all.</td>
</tr>
<tr>
<td>Policy 6.1</td>
<td>Provide safe and attractive pedestrian routes along arterials and collectors leading to schools, along arterials or collectors that carry high traffic volumes, on all downtown streets, along major streets leading to the downtown, and on all streets leading to transit facilities.</td>
</tr>
</tbody>
</table>
TABLE 4.12-5 CITY OF WALNUT CREEK GENERAL PLAN 2025 GOALS AND POLICIES

<table>
<thead>
<tr>
<th>Goal / Policy / Action Number</th>
<th>Goal / Policy / Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy 6.2</td>
<td>Require full-frontage curb and sidewalk improvements in all commercial areas.</td>
</tr>
<tr>
<td>Policy 6.4</td>
<td>Facilitate use of public sidewalks and walkways throughout the city.</td>
</tr>
<tr>
<td>Goal 7</td>
<td>Increase transit ridership and service to employment, schools, shopping, and recreation.</td>
</tr>
<tr>
<td>Policy 7.3</td>
<td>Link high-density residential developments, schools, employment centers, and shopping areas via transit.</td>
</tr>
<tr>
<td>Policy 7.5</td>
<td>Develop a comprehensive plan with CCCTA to install public transit amenities such as benches, passenger shelters, and walkways.</td>
</tr>
<tr>
<td>Goal 8</td>
<td>Serve as a model for other cities by providing a comprehensive TDM program that strives to decrease the use of the automobile and reduce peak-period traffic congestion.</td>
</tr>
<tr>
<td>Policy 8.2</td>
<td>Seek new and innovative methods and programs that address peak-period congestion.</td>
</tr>
<tr>
<td>Policy 8.5</td>
<td>Link high-density residential developments, employment centers, and shopping areas via transit, bikeways, and walkways.</td>
</tr>
<tr>
<td>Goal 9</td>
<td>Provide a pedestrian-friendly downtown.</td>
</tr>
<tr>
<td>Goal 13</td>
<td>Provide convenient and adequate loading facilities in the Core Area.</td>
</tr>
</tbody>
</table>

Source: City of Walnut Creek General Plan 2025.

Walnut Creek Bicycle Plan (2011)

The Walnut Creek Bicycle Plan outlines a comprehensive vision that supports bicycle use in Walnut Creek. The Bicycle Plan emphasizes policy directions established in the General Plan to: provide a safe and attractive environment for bicycle travel; promote bicycle use as a sustainable and healthy mode of transportation; and provide facilities that encourage and support bicycle use for travel and recreation in Walnut Creek. The Plan provides recommendations that promote cycling as a desirable transportation alternative to the automobile. Although the proposed Project would not include improvements or changes to the existing bicycle network, the Walnut Creek Bicycle Plan does identify future plans for future bicycle lanes and routes that would connect to existing routes in the vicinity of the proposed Project. Further, the Walnut Creek Bicycle Plan sets the minimum number of required bicycle parking spaces at 10 percent of the automobile parking supply, per the City of Walnut Creek Zoning Ordinance.

Walnut Creek Climate Action Plan (2012)

The City of Walnut Creek adopted a Climate Action Plan (CAP) on April 17, 2012. The CAP takes a comprehensive approach to reducing greenhouse gas (GHG) emissions in Walnut Creek, outlining goals, policies, and actions designed to achieve the State-mandated GHG reduction goals set forth in AB 32. The transportation sector is the largest contributor to Walnut Creek's GHG emissions and the CAP seeks to reduce these emissions through a variety of strategies, including reducing vehicle miles travelled (VMT), converting vehicular trips to alternate modes, and reducing vehicular GHG emissions.
4.12.4 EXISTING CONDITIONS

This section describes the Project site and transportation facilities in the vicinity, including the surrounding roadway network, transit, pedestrian, and bicycle facilities.

4.12.4.1 ROADWAY SYSTEM

The Project site is located at between Oakland Boulevard/I-680 Northbound Off-Ramp and North California Boulevard, south of Ygnacio Valley Road and north of Trinity/Civic Drive. Regional access to the Project site is provided by Routes of Regional Significance as defined by the Action Plans adopted by the CCTA. These include I-680, State Route 24, and Ygnacio Valley Road. The remaining roadways are classified as arterial, collector road, or local streets. Roadways surrounding the Project site are shown on Figure 3-1 in Chapter 3.0, Project Description, and described in the TIA included as Appendix H.

Roadways of Regional Significance
- Ygnacio Valley Road
- I-680
- State Route 24

Arterials and Collectors
- California Boulevard
- Main Street
- Civic Drive
- Mount Diablo Boulevard
- Olympic Boulevard
- Hillside Avenue
- Oakland Boulevard
- Trinity Avenue

Local Streets
- Lacassie Avenue

4.12.4.2 PEDESTRIAN FACILITIES

Pedestrian facilities include sidewalks, crosswalks, and pedestrian signals. Pedestrian activity is moderate, meaning pedestrian activity is greater than what would occur on side streets or through residential neighborhoods, along Ygnacio Valley Road and North California Boulevard between the BART station and downtown Walnut Creek. In the immediate vicinity of the Project site, pedestrian facilities are provided on both sides of Lacassie Avenue, Ygnacio Valley Road and North California Boulevard. However, fronting the Project site on Lacassie Avenue, there
is a gap in the sidewalk. Crosswalks are provided on all four approaches of the intersections adjacent to the Project site, with the exception of the Ygnacio Valley Road/Oakland Boulevard intersection, which has crosswalks on three legs of the intersection. The eastern leg does not have a crosswalk, both to allow the intersection to operate efficiently and because the double right-turn lane on the I-680 northbound/SR 24 eastbound off-ramp, would cause potential safety concerns with a crosswalk on this approach.

A potential pedestrian bridge over Ygnacio Valley Road to the BART station is being considered as part of the West downtown Specific Plan process; however, the planning process is not yet complete and no funding has yet been identified for a bridge.

4.12.4.3 BICYCLE FACILITIES

Bicycle facilities are classified as follows:

- **Bike paths (Class I)** – Paved trails that are separated from roadways.
- **Bike lanes (Class II)** – Lanes on roadways designated for use by bicycles through striping, pavement legends, and signs.
- **Enhanced Bike Routes (Class III)** – Provides for shared use of sidewalks with pedestrians, identified by signing along the sidewalk in the direction of vehicular traffic.
- **Bike Routes (Class III)** – Designated roadways for bicycle use by signs only; may or may not include additional pavement width for cyclists.

Figure 4.12-3 displays bicycle facilities in the Project vicinity.

4.12.4.4 PUBLIC TRANSIT

BART

The Walnut Creek BART Station is located within walking distance of the Project site. Pedestrian and bicycle access is provided by a sidewalk on the east side of the I-680 Northbound/SR-24 Eastbound off-ramp, connecting across the Ygnacio Valley Road intersection via crosswalks. Vehicles travelling from the Project site would use Lacassie Avenue to North California Boulevard to Ygnacio Valley Road to access the Station.

The BART station is served by the Pittsburg/Bay Point line, providing direct service to downtown Oakland and San Francisco. Trains operate approximately between the hours of 4:00 a.m. to midnight on weekdays, 6:00 a.m. to midnight on Saturdays, and 8:00 a.m. to midnight on Sundays. Table 4.12-6 presents the headways at the Walnut Creek BART station.

According to 2012 BART ridership data, the Walnut Creek BART station has an average daily ridership of 12,400. During the AM peak hour, 1,178 passengers board and 318 passengers alight at the Station; during the PM peak hour, 466 passengers board and 1,122 passengers alight at the Station.
County Connection Existing Bus Routes and Frequencies

<table>
<thead>
<tr>
<th>Route</th>
<th>Service Description</th>
<th>Approximate Hours of Service</th>
<th>Frequency (Minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weekday Routes</td>
<td></td>
<td>Peak</td>
</tr>
<tr>
<td>1</td>
<td>Rossmoor Shopping Center, Walnut Creek BART, Ygnacio Valley Road, John Muir Medical Center, Shadelands</td>
<td>5:55 a.m.–7:30 p.m.</td>
<td>60</td>
</tr>
<tr>
<td>2</td>
<td>Walnut Creek BART, Kaiser Permanente Medical Center, Trotter Way</td>
<td>6:30 a.m.–7:30 p.m.</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>Free Shuttle–Walnut Creek BART, Broadway Plaza</td>
<td>7:10 a.m.–9:30 p.m.</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>Walnut Creek BART, South Broadway, Kaiser Permanente Medical Center, Creekside Drive</td>
<td>6:30 a.m.–6:30 p.m.</td>
<td>45</td>
</tr>
<tr>
<td>7</td>
<td>Walnut Creek BART, Mitchell Park and Ride, Shadelands, Bancroft Road, Treat Boulevard, Buena Vista Avenue, Pleasant Hill/Contra Costa Centre BART</td>
<td>6:00 a.m.–10:30 a.m., 4:00 a.m.–8:40 p.m.</td>
<td>40</td>
</tr>
<tr>
<td>9</td>
<td>Diablo Valley College, Sun Valley Mall, JFK University, Crescent Plaza, Pleasant Hill/Contra Costa Centre BART, North Main Street, Walnut Creek BART</td>
<td>6:00 a.m.–10:45 p.m.</td>
<td>30</td>
</tr>
<tr>
<td>15</td>
<td>Concord BART, Treat Boulevard, Pleasant Hill/Contra Costa Centre BART, Walnut Creek BART</td>
<td>5:45 a.m.–8:45 p.m.</td>
<td>60</td>
</tr>
<tr>
<td>21</td>
<td>Walnut Creek BART, Alamo, Danville Boulevard, Danville Park and Ride, San Ramon Transit Center</td>
<td>5:30 a.m.–11:20 p.m.</td>
<td>30</td>
</tr>
<tr>
<td>25</td>
<td>Lafayette BART, Mount Diablo Boulevard, Walnut Creek BART</td>
<td>7:30 a.m.–7:00 p.m.</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Express Routes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>93X</td>
<td>Kirker Pass Express: Hillcrest Park and Ride, John Muir Medical Center, Walnut Creek BART</td>
<td>4:45 a.m.–7:45 p.m.</td>
<td>30-60</td>
</tr>
<tr>
<td>95X</td>
<td>San Ramon Express: San Ramon Transit Center to Walnut Creek BART</td>
<td>6:30 a.m.–9:00 a.m., 4:00 p.m.–7:15 p.m.</td>
<td>30</td>
</tr>
<tr>
<td>96X</td>
<td>Bishop Ranch Express, North: Walnut Creek BART to Bishop Ranch</td>
<td>5:35 a.m.–7:50 p.m.</td>
<td>20</td>
</tr>
<tr>
<td>98X</td>
<td>Martinez/Walnut Creek Express: Amtrak, Concord, Walnut Creek BART</td>
<td>5:40 a.m.–7:35 p.m.</td>
<td>45</td>
</tr>
</tbody>
</table>

Source: CCTA, 2013.
Figure 2-1. Existing Bicycle Facilities in the Project Vicinity

Source: 2011 Walnut Creek Bicycle Master Plan, City of Walnut Creek

Figure 4.12-3

Existing Bicycle Facilities in the Project Vicinity
Bus Service

The Project site accesses bus service provided by The County Connection, Solano Express, and Wheels. Figure 4.12-4 illustrates the existing bus routes serving the Project site.

County Connection

The CCCTA operates fixed-route and paratransit on weekdays throughout central Contra Costa County, including the communities of Concord, Pleasant Hill, Martinez, Walnut Creek, Clayton, Lafayette, Orinda, Moraga, Danville, San Ramon, as well as unincorporated communities in central Contra Costa County. Solano Express and Wheels connect the Walnut Creek BART station to Solano County and the Dublin/Pleasanton BART station, respectively.

The County Connection currently operates 30 fixed-route bus routes on weekdays throughout central Contra Costa County, with 13 routes serving the Walnut Creek BART Station. The following nine weekday bus routes provide direct connections to and from the Walnut Creek BART station: 1, 2, 4, 5, 7, 9, 15, 21, and 25. The following four peak period-only express routes also serve the Walnut Creek BART station: 93X, 95X, 96X and 98X.

Table 4.12-7 shows existing weekday County Connection bus ridership. Additional detail on bus service and routes is provided in the TIA (Appendix H), of this Draft EIR.

4.12.4.5 PARKING

On-street parking is provided on both sides of Lacassie Avenue west of North California Boulevard, with approximately 26 unregulated spaces and 12 spaces with a 4-hour time limit. Parking on North California Boulevard is metered with a 2-hour time limit within the Project vicinity. On-street parking is prohibited on Ygnacio Valley Road.

4.12.4.6 TRAFFIC COUNTS

Weekday morning and evening peak hour intersection turning movement counts for intersections 7 to 17 are taken from the 1500 North California Boulevard Environmental Impact Report certified in December 2012. The counts were collected in September 2012. Turning movement counts for intersections along Ygnacio Valley Road, from Hillside Avenue to Oak Grove Road, are taken from the Traffic Impact Study for the Shadelands Gateway Specific Plan, and were collected in January 2013. The City of Walnut Creek provided turning movement counts for intersections 5 and 6, which were collected in 2010. All traffic counts were collected during peak periods (7:00 to 9:00 a.m. and 4:00 to 6:00 p.m.). A review of the 2010 and 2012 counts relative to the more recent 2013 counts at nearby intersections indicates that the older counts represent 2013 conditions and do not require adjustments.

6 This draft document is available for public review at the City of Walnut Creek’s Community Development Department and the City’s website at http://www.walnut-creek.org/citygov/depts/cd/planning/shadelands_gateway_specific_plan.asp.
Figure 2-2. Existing Bus Routes in the Project Vicinity

Figure 4.12-4
Existing Bus Routes in the Project Vicinity
TABLE 4.12-7 EXISTING COUNTY CONNECTION WEEKDAY BUS RIDERSHIP, WALNUT CREEK BART STATION

<table>
<thead>
<tr>
<th>Route</th>
<th>All Day Board</th>
<th>All Day Alight</th>
<th>AM Peak Board</th>
<th>AM Peak Alight</th>
<th>Midday Peak Board</th>
<th>Midday Peak Alight</th>
<th>PM Peak Board</th>
<th>PM Peak Alight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>191</td>
<td>141</td>
<td>47</td>
<td>22</td>
<td>80</td>
<td>56</td>
<td>35</td>
<td>29</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>16</td>
<td>10</td>
<td>7</td>
<td>10</td>
<td>7</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>487</td>
<td>359</td>
<td>50</td>
<td>22</td>
<td>222</td>
<td>118</td>
<td>137</td>
<td>136</td>
</tr>
<tr>
<td>5</td>
<td>21</td>
<td>30</td>
<td>5</td>
<td>19</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>77</td>
<td>58</td>
<td>31</td>
<td>24</td>
<td>5</td>
<td>6</td>
<td>37</td>
<td>27</td>
</tr>
<tr>
<td>9</td>
<td>97</td>
<td>63</td>
<td>12</td>
<td>13</td>
<td>27</td>
<td>20</td>
<td>36</td>
<td>15</td>
</tr>
<tr>
<td>15</td>
<td>59</td>
<td>55</td>
<td>4</td>
<td>12</td>
<td>25</td>
<td>23</td>
<td>23</td>
<td>7</td>
</tr>
<tr>
<td>21</td>
<td>244</td>
<td>161</td>
<td>80</td>
<td>32</td>
<td>64</td>
<td>47</td>
<td>46</td>
<td>36</td>
</tr>
<tr>
<td>25</td>
<td>19</td>
<td>14</td>
<td>3</td>
<td>2</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>93X</td>
<td>73</td>
<td>43</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>69</td>
<td>0</td>
</tr>
<tr>
<td>95X</td>
<td>67</td>
<td>77</td>
<td>39</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>28</td>
<td>61</td>
</tr>
<tr>
<td>96X</td>
<td>297</td>
<td>213</td>
<td>228</td>
<td>17</td>
<td>17</td>
<td>10</td>
<td>30</td>
<td>125</td>
</tr>
<tr>
<td>98X</td>
<td>130</td>
<td>129</td>
<td>37</td>
<td>26</td>
<td>49</td>
<td>52</td>
<td>34</td>
<td>25</td>
</tr>
<tr>
<td>Total</td>
<td>1,792</td>
<td>1,359</td>
<td>546</td>
<td>221</td>
<td>512</td>
<td>351</td>
<td>499</td>
<td>469</td>
</tr>
</tbody>
</table>

Source: CCTA, 2011.

4.12.4.7 INTERSECTION OPERATIONS

Intersection Level of Service

Existing operations were evaluated using the methodology described in Section 4.12.2 for the weekday AM and PM peak hours at all but intersections 2, 3 and 4. The results are summarized in Table 4.12-8. The analysis is based on the traffic volumes, lane configurations and traffic control shown on Figure 4.12-5a and 4.12-5b. Observed peak hour factors (PHF) were used at all intersections for the existing analysis. The PHF is the relationship between the peak 15-minute flow rate and the full hourly volume: $PHF = \frac{Hourly\ volume}{4 \times (Volume\ during\ the\ peak\ 15\ minutes\ of\ flow)}$. The analysis of level of service is based on peak rates of flow occurring within the peak hour because substantial short-term fluctuations typically occur during an hour.

As shown, during both AM and PM peak hours based on the CCTALOS analysis method, the non-Ygnacio Valley Road signalized study intersections currently operate at acceptable service levels. The unsignalized North California Boulevard/Cole Avenue intersection, analyzed with the Highway Capacity Manual methodology for side-street stop-controlled intersections, operates at LOS F in the PM peak hour, for the worst-delay approach (the eastbound approach). However, the overall intersection operates at LOS A because the north-south approaches on North California Avenue are uncontrolled.
TABLE 4.12-8 EXISTING PEAK HOUR LEVELS OF SERVICE AT STUDY INTERSECTIONS

<table>
<thead>
<tr>
<th>Location</th>
<th>Control</th>
<th>Peak Hour</th>
<th>V/C Ratio</th>
<th>LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ygnacio Valley Road/Hillside Avenue/I-680 SB On-Ramp</td>
<td>Signal</td>
<td>AM</td>
<td>0.41</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.48</td>
<td>A</td>
</tr>
<tr>
<td>2. Ygnacio Valley Road/Oakland Boulevard</td>
<td>Signal</td>
<td>AM</td>
<td>Performance based on Ygnacio Valley Road Delay Index</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Ygnacio Valley Road/North California Boulevard</td>
<td>Signal</td>
<td>AM</td>
<td>0.57</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.56</td>
<td>A</td>
</tr>
<tr>
<td>4. Ygnacio Valley Road/North Main Street</td>
<td>Signal</td>
<td>AM</td>
<td>0.40</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.44</td>
<td>A</td>
</tr>
<tr>
<td>5. North California Boulevard/Parkside Drive</td>
<td>Signal</td>
<td>AM</td>
<td>0.32</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.47</td>
<td>A</td>
</tr>
<tr>
<td>6. North California Boulevard/North Main Street</td>
<td>Signal</td>
<td>AM</td>
<td>0.46</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.50</td>
<td>A</td>
</tr>
<tr>
<td>7. North California Boulevard/Lacassie Avenue</td>
<td>Signal</td>
<td>AM</td>
<td>0.37</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.54</td>
<td>A</td>
</tr>
<tr>
<td>8. North California Boulevard/Cole Avenue<sup>d</sup></td>
<td>SSSC</td>
<td>AM</td>
<td>0.48</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.55</td>
<td>A</td>
</tr>
<tr>
<td>9. North California Boulevard/Civic Drive/Trinity Avenue</td>
<td>Signal</td>
<td>AM</td>
<td>0.20</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.43</td>
<td>A</td>
</tr>
<tr>
<td>10. North California Boulevard/Bonanza Street</td>
<td>Signal</td>
<td>AM</td>
<td>0.44</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.44</td>
<td>A</td>
</tr>
<tr>
<td>11. Mount Diablo Boulevard/Boulevard Way</td>
<td>Signal</td>
<td>AM</td>
<td>0.44</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.44</td>
<td>A</td>
</tr>
<tr>
<td>12. Mount Diablo Boulevard/Bonanza Street</td>
<td>Signal</td>
<td>AM</td>
<td>0.65</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.50</td>
<td>A</td>
</tr>
<tr>
<td>13. California Boulevard/Mount Diablo Boulevard</td>
<td>Signal</td>
<td>AM</td>
<td>0.60</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.92</td>
<td>E</td>
</tr>
<tr>
<td>14. Olympic Boulevard/I-680 Southbound Off-Ramp</td>
<td>Signal</td>
<td>AM</td>
<td>0.41</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.53</td>
<td>A</td>
</tr>
<tr>
<td>15. Olympic Boulevard/I-680 Northbound Ramps</td>
<td>Signal</td>
<td>AM</td>
<td>0.42</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.53</td>
<td>A</td>
</tr>
</tbody>
</table>

Note: **Bold** type indicates operation at an unacceptable level of service standard.

a. Signal = signalized intersection.
b. Volume-to-Capacity (V/C) ratio based on CCTALOS method.
c. LOS = Level of service.
d. LOS given as Average LOS (LOS for worst (eastbound) approach).

Figure 4.12-5a

Existing Peak Hour Intersection Traffic Volumes, Lane Configurations and Traffic Control

Figure 4.12-5b

Existing Peak Hour Intersection Traffic Volumes, Lane Configurations and Traffic Control
The intersection of Olympic Boulevard/I-680 Northbound Ramps operates at LOS E, V/C=0.92 in the PM peak hour, which meets the level of service standard of LOS E, V/C=0.95. Detailed intersection level of service calculation worksheets are presented in Appendix H of this Draft EIR.

A peak-hour signal warrant analysis was performed for the North California Boulevard/Cole Avenue intersection, for the PM peak hour. Based on auto volumes and existing intersection geometry, the intersection does not meet the peak hour signal warrant under existing conditions. Detailed signal warrant calculation worksheets are presented in Appendix H of this Draft EIR.

An HCM analysis of the freeway ramp intersections is provided in Appendix H of this Draft EIR.

Delay Index on Ygnacio Valley Road

The Delay Index was calculated for Ygnacio Valley Road from Oak Grove Road to the I-680 Southbound On-ramp using the method described in Section 4.12-2 of this chapter. The Delay Index threshold is in Table 4.12-4. Table 4.12-9 presents existing peak hour delay indices and corresponding average speed. The corridor currently meets the standard (Delay Index less than or equal to 2.0, average travel speed of at least 15 miles per hour [mph].) Travel speed through the corridor varies from 20 to 30 miles per hour during peak periods, depending on the direction of travel. The average travel speeds represent typical conditions over the peak hour; some individual trips may be longer or shorter than shown due to fluctuations in traffic volumes along the corridor during the peak commute periods.

<table>
<thead>
<tr>
<th>Direction</th>
<th>Peak Hour</th>
<th>Delay Index</th>
<th>Average Speed (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ygnacio Valley Road Eastbound</td>
<td>AM</td>
<td>1.2</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>1.3</td>
<td>16</td>
</tr>
<tr>
<td>Ygnacio Valley Road Westbound</td>
<td>AM</td>
<td>1.1</td>
<td>25.5</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>1.2</td>
<td>20.1</td>
</tr>
</tbody>
</table>

Freeway Operations

Table 4.12-10 presents the freeway operations using the latest available mainline and ramp data, collected from the 1500 North California Project EIR (December 2012), the Traffic Impact Study for the Shadelands Gateway Specific Plan, and from the Caltrans volume database. Appendix H of this Draft EIR contains the technical worksheets.
TABLE 4.12-10 EXISTING FREEWAY OPERATIONS

<table>
<thead>
<tr>
<th>Freeway Facility</th>
<th>AM Peak</th>
<th>PM Peak</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOS</td>
<td>Density</td>
</tr>
<tr>
<td>Mainline Segments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-680: North of North Main Street</td>
<td>NB</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>SB</td>
<td>F</td>
</tr>
<tr>
<td>I-680: South of Olympic</td>
<td>NB</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>SB</td>
<td>C</td>
</tr>
<tr>
<td>SR-24: West of I-680</td>
<td>EB</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>WB</td>
<td>D</td>
</tr>
<tr>
<td>Ramp Junctions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-680: Ygnacio Valley Road Off Ramp</td>
<td>NB</td>
<td>B</td>
</tr>
<tr>
<td>I-680: Ygnacio Valley Road On Ramp</td>
<td>SB</td>
<td>F</td>
</tr>
<tr>
<td>I-680: North Main Street Off Ramp</td>
<td>SB</td>
<td>F</td>
</tr>
<tr>
<td>I-680: North Main Street On Ramp</td>
<td>NB</td>
<td>C</td>
</tr>
<tr>
<td>SR-24: Ygnacio Valley Road On Ramp</td>
<td>WB</td>
<td>D</td>
</tr>
<tr>
<td>SR-24: Ygnacio Valley Road Off Ramp</td>
<td>EB</td>
<td>C</td>
</tr>
<tr>
<td>SR-24: Mt. Diablo Blvd On Ramp</td>
<td>WB</td>
<td>C</td>
</tr>
<tr>
<td>SR-24: Mt. Diablo Blvd Off Ramp</td>
<td>EB</td>
<td>C</td>
</tr>
</tbody>
</table>

4.12.5 STANDARDS OF SIGNIFICANCE

STATE CEQA GUIDELINES SIGNIFICANCE CRITERIA

An Initial Study was prepared for the proposed Project (see Appendix A of this Draft EIR). Based on the analysis contained in the Initial Study it was determined that development of the proposed Project would not result in significant environmental impacts per the following significance standards and therefore, the following are not discussed in this chapter.

- Result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks.
- Result in inadequate emergency access.
- Conflict with adopted policies, plans, or programs regarding public transit, bicycle, or pedestrian facilities, or otherwise decrease the performance or safety of such facilities.
Based on the Initial Study it was determined that the proposed Project would result in a significant transportation impact if it would:

1. Conflict with an applicable plan, ordinance or policy establishing measures of effectiveness for the performance of the circulation system, taking into account all modes of transportation including mass transit and non-motorized travel and relevant components of the circulation system, including but not limited to intersections, streets, highways and freeways, pedestrian and bicycle paths, and mass transit.

2. Conflict with an applicable congestion management program, including, but not limited to level of service standards and travel demand measures, or other standards established by the county congestion management agency for designated roads or highways.

3. Substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment).

CITY OF WALNUT CREEK SIGNIFICANCE CRITERIA

The City’s LOS and performance standards as defined in the Walnut Creek General Plan 2025 and the 2000 Central Contra Costa County Action Plan for Routes of Regional Significance (Action Plan), as adopted by the General Plan 2025 Transportation Element, Goal 3, Policy 3, were used to determine whether implementation of the Project would result in a significant impact to the study intersections and routes of regional significance.

The Walnut Creek General Plan 2025 contains LOS standards that vary for different street classifications. Table 4.12-4 above presents the Walnut Creek roadway level of service standards for various roadway types in the Project area.

The City has not adopted significance criteria for unsignalized intersections. For this EIR, the significance threshold for unsignalized intersections is consistent with that used for the 1500 North California Draft EIR. The threshold considers average delay for the worst stop-controlled approach; whether the intersection would satisfy the CA MUTCD traffic signal warrant; and the findings of an engineering study conducted to determine necessity of further traffic control.

Impacts would be considered significant if the Project causes any of the following to occur:

- The addition of Project traffic causes a signalized intersection located east of I-680 (except for intersections 2, 3 and 4) to deteriorate from an acceptable level to an unacceptable level, which is defined as High LOS E (v/c ratio of 0.95 or higher) or worse. For intersections operating at a v/c ratio greater than 0.95 under baseline conditions, the Project would result in a significant impact if it were to increase the intersection v/c ratio by 0.05 or more.

- The addition of Project traffic causes a signalized intersection located west of I-680 to deteriorate from an acceptable level to an unacceptable level, which is defined as high LOS D or worse (v/c ratio of 0.85 or higher). For intersections operating at a v/c ratio greater than 0.85 under baseline conditions, the Project would result in a significant impact if it were to increase the intersection v/c ratio by 0.05 or more.

9 The California Manual on Uniform Traffic Control Devices (CA MUTCD) is published and maintained by Caltrans.
The addition of Project traffic at an unsignalized intersection causes the worst stop-controlled approach to operate at LOS F, and causes the intersection to meet the criteria of the CA MUTCD Peak Hour Traffic Volume Signal Warrant, and meets the requirements of an engineering study determining the need to adopt further traffic control measures.

The addition of Project traffic results in the Multimodal Traffic Service Objective (MTSO) for Ygnacio Valley Road to exceed the standard, which is a delay index of 2.0 or for the average travel speed to drop below 15 miles per hour.

The Project substantially increases hazards or congestion due to excessive queuing.

The Project results in inadequate emergency access.

The Project conflicts with adopted transportation policies, plans, or programs regarding public transit, bicycle or pedestrian facilities, or otherwise decrease the performance or safety of such facilities.

4.12.6 IMPACT DISCUSSION

This section analyzes potential Project-specific and cumulative impacts to transportation and traffic.

| TRAF-1 | The proposed Project would not conflict with an applicable plan, ordinance or policy establishing measures of effectiveness for the performance of the circulation system, taking into account all modes of transportation including mass transit and non-motorized travel and relevant components of the circulation system, including but not limited to intersections, streets, highways and freeways, pedestrian and bicycle paths, and mass transit. |

As discussed in the Chapter 3, Project Description, of this Draft EIR, the proposed Project would result in a total of 178 residential apartment units consisting of mostly one-bedroom apartments and studios. Additionally, 223 parking stalls would be constructed within a two level parking garage. Approximately 381 residents are expected to reside at the Project site; however, the number of total estimated residents is conservative given that some residential units would be studios, and the majority of units would be one-bedroom. The total trip generation expected from the proposed Project is shown on Table 4.12-11. As shown, this analysis is based on the new net units (158) that would occur on the Project site.

Existing With Project Conditions

The Existing With Project Conditions scenario reflect trips, shown in Figure 4.12-6a and 4.12-6b, added to the existing peak hour traffic volumes, as shown on Figure 4.12-7a and 4.12-7b, to estimate Existing With Project peak hour traffic volumes, shown in Figure 4.12-8a and Figure 4.12-8b. No roadway improvements were assumed for this case, except for the frontage improvements that would occur under the proposed Project. Peak hour intersection operations for all but intersections 2, 3, and 4, were evaluated using the CCTALOS method, and are shown in Table 4.12-12.

10 This analysis is based on the Association of Bay Area Governments (ABAG) projections of the average household size of 2.14 persons for Walnut Creek in 2025, as described in Chapter 4.10, Population and Housing, of this Draft EIR.

Figure 4.12-6a

Project Trip Assignment – Existing With Project Conditions
TRANSPORTATION AND TRAFFIC

Figure 4.12-6b
Project Trip Assignment – Existing With Project Conditions
Existing Peak Hour Intersection Traffic Volumes, Lane Configurations and Traffic Control

Figure 4.12-7a

<table>
<thead>
<tr>
<th>Site</th>
<th>AM (PM) Peak Hour Traffic Volumes</th>
<th>Intersection Evaluated via Corridor Delay Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,044 (1,133) 782 (1,259)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>120 (173) 299 (132)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>126 (176) 1,415 (1,901) 124 (34)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>74 (303) 120 (40)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>155 (71) 1,424 (1,568) 148 (80)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>78 (41) 1,457 (1,648) 209 (138)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>104 (146) 1,689 (1,646) 67 (132)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60 (56) 1,341 (1,711) 120 (125)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>329 (115) 1,598 (852) 470 (387)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>65 (55) 155 (91) 40 (10)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>73 (165) 283 (355) 81 (54)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>386 (231) 200 (197)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>44 (18) 69 (90) 34 (90) 5 (4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12 (21) 3 (13) 7 (20)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>15 (22) 76 (54) 126 (93)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 (81) 0 (2) 3 (12)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14 (20) 1 (4) 6 (19)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>39 (90) 20 (28)</td>
<td></td>
</tr>
</tbody>
</table>

Existing Peak Hour Intersection Traffic Volumes, Lane Configurations and Traffic Control

Figure 4.12-7b
Figure 4.12-8b

Existing Plus Project Peak Hour Intersection Traffic Volumes, Lane Configurations and Traffic Control

Table 4.12-11
Project Trip Generation Estimates

<table>
<thead>
<tr>
<th>Land Use</th>
<th>ITE Code</th>
<th>Units</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
<th>Daily</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>In</td>
<td>Out</td>
<td>Total</td>
</tr>
<tr>
<td>Residential</td>
<td>220</td>
<td>178</td>
<td>18</td>
<td>73</td>
<td>91</td>
</tr>
<tr>
<td>20% vehicle trip reductiona</td>
<td>(4)</td>
<td>(15)</td>
<td>(19)</td>
<td>(15)</td>
<td>(8)</td>
</tr>
<tr>
<td>Existing Trips for 21 Dwelling Units</td>
<td>(3)</td>
<td>(11)</td>
<td>(14)</td>
<td>(19)</td>
<td>(10)</td>
</tr>
<tr>
<td>Net Vehicle Trips</td>
<td>11</td>
<td>47</td>
<td>59</td>
<td>41</td>
<td>23</td>
</tr>
</tbody>
</table>

Note: Trip generation based on Institute of Transportation Engineers (ITE), Trip Generation, (9th Edition) equations for Apartment (Land Use Code 220):

AM: 0.49 (X) + 3.73; Enter = 20%, Exit=80%
PM: 0.55 (X) + 17.65; Enter = 65%, Exit = 35%
Daily: 6.06 (X) + 123.56

Where: T = trips generated, X = Dwelling Units

a. Based on 2000 Census data for the land uses adjacent the Walnut Creek BART Station. Sources: Trip Generation (9th Edition), ITE; and Fehr & Peers, 2013.

Intersections Levels of Service

As shown, the addition of Project traffic would not change the service level at the intersections in either the AM or PM peak hours. Although the eastbound approach of the unsignalized intersection of North California Boulevard/Cole Avenue operates at LOS F in the PM peak hour with the Project, the addition of Project traffic to the uncontrolled approaches (northbound and southbound) does not cause the intersection to meet the peak hour signal warrant. HCM analyses of the ramp intersections are included in Appendix H of this Draft EIR. The Project traffic would not cause the service levels to change at the five ramp intersections, and delays would increase by less than 1 second. Because existing level of service standards do not change in either AM or PM peak hours as a result of the Project, the impact would be less than significant.

Significance Without Mitigation: Less than significant.

Delay Index on Ygnacio Valley Road

The Delay Index was calculated for Ygnacio Valley Road from Oak Grove Road to the I-680 Southbound On-ramp for the Existing With Project Conditions. The results are presented in Table 4.12-13. The addition of Project traffic to the Ygnacio Valley Road corridor would not appreciably change the travel speed along the corridor or result in the Delay Index exceeding 2.0, therefore, the impact to the Delay Index on Ygnacio Valley Road would be less than significant.

Significance Without Mitigation: Less than significant.
TABLE 4.12-12 EXISTING (2013) WITH PROJECT PEAK HOUR LEVEL OF SERVICE

<table>
<thead>
<tr>
<th>Location</th>
<th>Control</th>
<th>Peak Hour</th>
<th>Existing</th>
<th>Existing With Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ygnacio Valley Road/Hillside Avenue/I-680 SB On-Ramp</td>
<td>Signal</td>
<td>AM</td>
<td>0.41</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.48</td>
<td>0.48</td>
</tr>
<tr>
<td>2. Ygnacio Valley Road/Oakland Boulevard</td>
<td>Signal</td>
<td>AM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Ygnacio Valley Road/North California Boulevard</td>
<td>Signal</td>
<td>AM</td>
<td></td>
<td>Performance based on</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td></td>
<td>Ygnacio Valley Road Delay Index</td>
</tr>
<tr>
<td>4. Ygnacio Valley Road/North Main Street</td>
<td>Signal</td>
<td>AM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. North California Boulevard/Parkside Drive</td>
<td>Signal</td>
<td>AM</td>
<td>0.57</td>
<td>0.57</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.56</td>
<td>0.57</td>
</tr>
<tr>
<td>6. North California Boulevard/North Main Street</td>
<td>Signal</td>
<td>AM</td>
<td>0.40</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.44</td>
<td>0.44</td>
</tr>
<tr>
<td>7. North California Boulevard/Lacassie Avenue</td>
<td>Signal</td>
<td>AM</td>
<td>0.32</td>
<td>0.34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.47</td>
<td>0.48</td>
</tr>
<tr>
<td>8. North California Boulevard/Cole Avenue#</td>
<td>SSSC</td>
<td>AM</td>
<td>0.7 (38)</td>
<td>0.7 (40)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>3.1 (55)</td>
<td>3.2 (57)</td>
</tr>
<tr>
<td>9. North California Boulevard/Civic Drive/Trinity Avenue</td>
<td>Signal</td>
<td>AM</td>
<td>0.46</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>10. North California Boulevard/Bonanza Street</td>
<td>Signal</td>
<td>AM</td>
<td>0.37</td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.54</td>
<td>0.54</td>
</tr>
<tr>
<td>11. Mount Diablo Boulevard/Boulevard Way</td>
<td>Signal</td>
<td>AM</td>
<td>0.48</td>
<td>0.49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.55</td>
<td>0.56</td>
</tr>
<tr>
<td>12. Mount Diablo Boulevard/Bonanza Street</td>
<td>Signal</td>
<td>AM</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.43</td>
<td>0.43</td>
</tr>
<tr>
<td>13. California Boulevard/Mount Diablo Boulevard</td>
<td>Signal</td>
<td>AM</td>
<td>0.44</td>
<td>0.44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.59</td>
<td>0.60</td>
</tr>
<tr>
<td>14. Olympic Boulevard/I-680 Southbound Off-Ramp</td>
<td>Signal</td>
<td>AM</td>
<td>0.65</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>15. Olympic Boulevard/I-680 Northbound Ramps</td>
<td>Signal</td>
<td>AM</td>
<td>0.60</td>
<td>0.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.92</td>
<td>0.92</td>
</tr>
<tr>
<td>16. Olympic Boulevard/Alpine Road</td>
<td>Signal</td>
<td>AM</td>
<td>0.41</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.53</td>
<td>0.53</td>
</tr>
<tr>
<td>17. South California Boulevard/Olympic Boulevard</td>
<td>Signal</td>
<td>AM</td>
<td>0.42</td>
<td>0.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.53</td>
<td>0.53</td>
</tr>
</tbody>
</table>

Note: **Bold** type indicates operation at an unacceptable level of service standard.
a. Signal = signalized intersection
b. V/C = Volume-to-Capacity Ratio
c. LOS = Level of Service
d. LOS given as Average LOS (LOS for worst (eastbound) approach).
Table 4.12-13 EXISTING WITH PROJECT DELAY INDEX FOR YGNACIO VALLEY ROAD

<table>
<thead>
<tr>
<th>Direction</th>
<th>Peak Hour</th>
<th>Existing Delay Index</th>
<th>Existing Average Speed (mph)</th>
<th>Existing With Project Delay Index</th>
<th>Existing With Project Average Speed (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ygnacio Valley Road Eastbound (I-680 to Oak Grove Road)</td>
<td>AM</td>
<td>1.2</td>
<td>25.0</td>
<td>1.2</td>
<td>25.0</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>1.3</td>
<td>16.0</td>
<td>1.3</td>
<td>16.0</td>
</tr>
<tr>
<td>Ygnacio Valley Road Westbound (Oak Grove Road to I-680)</td>
<td>AM</td>
<td>1.1</td>
<td>25.5</td>
<td>1.1</td>
<td>25.5</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>1.2</td>
<td>20.1</td>
<td>1.2</td>
<td>20.1</td>
</tr>
</tbody>
</table>

Freeway Operations

Table 4.12-14 presents the Existing With Project freeway analysis. The addition of traffic as result of the proposed Project would not affect existing level of service standards or densities. Although the density in some segments could increase, the increase is marginal and would not result in the existing level of service standards in either segment, or ramp junctions to decline. Therefore, the impact with respect to freeway operations would be less than significant.

Significance Without Mitigation: Less than significant.

Near-Term (2016) Without Project Traffic Conditions

The Near-Term (2016) scenario traffic includes the existing traffic counts and traffic from approved and pending projects in the vicinity of the Project site. Therefore, the Near-Term (2016) condition represents the likely traffic levels when the proposed Project is constructed and occupied. Based on discussions with City staff, a number of developments were identified that could generate additional traffic in the Project vicinity by 2016. These projects are listed in Table 4.12-15, and their locations are shown on Figure 4.12-9.

Near-Term (2016) project vehicle trip generation was estimated using average trip generation rates and trip generation equations for the proposed land uses from ITE's Trip Generation (9th Edition), and other sources, such as the traffic studies prepared for specific developments. Traffic generated by approved and pending projects was added to the existing traffic volumes to provide the basis for the Near-Term (2016) analysis of Project impacts. Near-Term (2016) Without Project peak hour traffic volumes are shown on Figure 4.12-10a and Figure 4.12-10b.

Near-Term (2016) With Project Traffic

The peak hour Project trips, as determined previously, were added to the Near-Term (2016) Without Project volumes to determine future traffic volumes with the Project. Near-Term (2016) With Project Traffic intersection peak hour traffic volumes are shown on Figure 4.12-11.
Table 4.12-14 Existing with Project Freeway Operations

<table>
<thead>
<tr>
<th>Freeway Facility</th>
<th>AM Peak</th>
<th>PM Peak</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ex</td>
<td>Ex + P</td>
</tr>
<tr>
<td>Mainline Segments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-680: North of North Main Street</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NB</td>
<td>D/28.5</td>
<td>D/28.6</td>
</tr>
<tr>
<td>SB</td>
<td>F/In Queue</td>
<td>F/In Queue</td>
</tr>
<tr>
<td>I-680: South of Olympic Blvd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NB</td>
<td>C/23.5</td>
<td>C/23.5</td>
</tr>
<tr>
<td>SB</td>
<td>C/20.8</td>
<td>C/20.9</td>
</tr>
<tr>
<td>SR-24: West of I-680</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EB</td>
<td>C/18.9</td>
<td>C/18.9</td>
</tr>
<tr>
<td>WB</td>
<td>D/29.1</td>
<td>D/29.1</td>
</tr>
<tr>
<td>Ramp Junctions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-680: Ygnacio Valley Road Off Ramp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NB</td>
<td>B/18.1</td>
<td>B/18.1</td>
</tr>
<tr>
<td>I-680: Ygnacio Valley Road On Ramp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB</td>
<td>F/In Queue</td>
<td>F/In Queue</td>
</tr>
<tr>
<td>I-680: North Main Street Off Ramp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB</td>
<td>F/In Queue</td>
<td>F/In Queue</td>
</tr>
<tr>
<td>I-680: North Main Street On Ramp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NB</td>
<td>C/20.4</td>
<td>C/20.5</td>
</tr>
<tr>
<td>SR-24: Ygnacio Valley Road On Ramp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WB</td>
<td>D/34.6</td>
<td>D/34.6</td>
</tr>
<tr>
<td>SR-24: Ygnacio Valley Road Off Ramp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EB</td>
<td>C/25.6</td>
<td>C/25.6</td>
</tr>
<tr>
<td>SR-24: Mt. Diablo Blvd On Ramp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WB</td>
<td>C/24.5</td>
<td>C/24.6</td>
</tr>
<tr>
<td>SR-24: Mt. Diablo Blvd Off Ramp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EB</td>
<td>C/20.5</td>
<td>C/20.5</td>
</tr>
</tbody>
</table>

Source: Fehr & Peers, 2013.

Intersections Levels of Service

Near-Term and Near-Term With Project peak hour intersection operations for all but intersections 2, 3 and 4 were evaluated using the CCTALOS method, and are presented in Table 4.12-16. The addition of Project traffic would not change the service level at the intersections in either the AM or PM peak hours. Although the eastbound approach of the unsignalized North California Boulevard/Cole Avenue intersection would continue to operate at LOS F in the PM peak hour with the Project, the addition of Project traffic to the uncontrolled approaches (northbound and southbound) does not cause the intersection to meet the peak hour signal warrant under near-term conditions.
The HCM analyses of the ramp intersections are included in Appendix H of this Draft EIR. With the addition of Near-Term Project traffic, the service levels remain the same as in existing conditions and delays increase by 10 seconds or less. Relative to Near-Term Without Project conditions, the Project traffic does not cause the service levels to change at the five ramp intersections, and delays increase by less than one second. Therefore, a less-than-significant impact would occur on non-Ygnacio Valley Road intersections.

Significance Without Mitigation: Less than significant.
Near-Term Baseline Projects

Figure 4.12-9
Near-Term (2016) Without Project Peak Hour Intersection Traffic Volumes, Lane Configurations and Traffic Control

Figure 4.12-10a
Near-Term (2016) Without Project Peak Hour Intersection Traffic Volumes, Lane Configurations and Traffic Control

Figure 4.12-10b

Figure 4.12-11a
Near-Term (2016) With Project Peak Hour Intersection Traffic Volumes, Lane Configurations and Traffic Control

Near-Term (2016) With Project Peak Hour Intersection Traffic Volumes, Lane Configurations and Traffic Control

TABLE 4.12-16 NEAR-TERM (2016) WITH PROJECT PEAK HOUR LEVEL OF SERVICE

<table>
<thead>
<tr>
<th>Location</th>
<th>Control</th>
<th>Peak Hour</th>
<th>Near-Term</th>
<th>Near-Term With Project</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>V/C b</td>
<td>LOS c</td>
</tr>
<tr>
<td>1. Ygnacio Valley Road/Hillside Avenue/I-680 SB On-Ramp</td>
<td>Signal</td>
<td>AM</td>
<td>0.42</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.50</td>
<td>A</td>
</tr>
<tr>
<td>2. Ygnacio Valley Road/Oakland Boulevard</td>
<td>Signal</td>
<td>AM</td>
<td>0.42</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.50</td>
<td>A</td>
</tr>
<tr>
<td>3. Ygnacio Valley Road/North California Boulevard</td>
<td>Signal</td>
<td>AM</td>
<td>Performance based on Ygnacio Valley Road Delay Index</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Ygnacio Valley Road/North Main Street</td>
<td>Signal</td>
<td>AM</td>
<td>0.59</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.61</td>
<td>A</td>
</tr>
<tr>
<td>5. North California Boulevard/Parkside Drive</td>
<td>Signal</td>
<td>AM</td>
<td>0.41</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.46</td>
<td>A</td>
</tr>
<tr>
<td>6. North California Boulevard/North Main Street</td>
<td>Signal</td>
<td>AM</td>
<td>0.32</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.48</td>
<td>A</td>
</tr>
<tr>
<td>7. North California Boulevard/Lacassie Avenue</td>
<td>Signal</td>
<td>AM</td>
<td>0.32</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.48</td>
<td>A</td>
</tr>
<tr>
<td>8. North California Boulevard/Cole Avenued</td>
<td>SSSC</td>
<td>AM</td>
<td>0.7 (40)</td>
<td>A (E)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>3.4 (62)</td>
<td>A (F)</td>
</tr>
<tr>
<td>9. North California Boulevard/Civic Drive/Trinity Avenue</td>
<td>Signal</td>
<td>AM</td>
<td>0.49</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.52</td>
<td>A</td>
</tr>
<tr>
<td>10. North California Boulevard/Bonanza Street</td>
<td>Signal</td>
<td>AM</td>
<td>0.39</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.58</td>
<td>A</td>
</tr>
<tr>
<td>11. Mount Diablo Boulevard/Boulevard Way</td>
<td>Signal</td>
<td>AM</td>
<td>0.50</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.59</td>
<td>A</td>
</tr>
<tr>
<td>12. Mount Diablo Boulevard/Bonanza Street</td>
<td>Signal</td>
<td>AM</td>
<td>0.21</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.46</td>
<td>A</td>
</tr>
<tr>
<td>13. California Boulevard/Mount Diablo Boulevard</td>
<td>Signal</td>
<td>AM</td>
<td>0.46</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.64</td>
<td>B</td>
</tr>
<tr>
<td>14. Olympic Boulevard/I-680 Southbound Off-Ramp</td>
<td>Signal</td>
<td>AM</td>
<td>0.47</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.51</td>
<td>A</td>
</tr>
<tr>
<td>15. Olympic Boulevard/I-680 Northbound Ramps</td>
<td>Signal</td>
<td>AM</td>
<td>0.62</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.95</td>
<td>E</td>
</tr>
<tr>
<td>16. Olympic Boulevard/Alpine Road</td>
<td>Signal</td>
<td>AM</td>
<td>0.42</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.55</td>
<td>A</td>
</tr>
<tr>
<td>17. South California Boulevard/Olympic Boulevard</td>
<td>Signal</td>
<td>AM</td>
<td>0.44</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.57</td>
<td>A</td>
</tr>
</tbody>
</table>

a. Signal = signalized intersection
b. V/C = Volume-to-Capacity Ratio
c. LOS = Level of service
d. LOS given as Average LOS (LOS for worst (eastbound) approach).
Delay Index on Ygnacio Valley Road

The Delay Index was calculated for Ygnacio Valley Road from Oak Grove Road to the I-680 Southbound On-ramp for the Near-Term and Near-Term With Project Conditions, as presented in Table 4.12-17. Average speed is expected to decrease along the corridor in the Near-Term Condition; however, the addition of traffic from approved and pending projects, as well as the proposed Project, to the Ygnacio Valley Road corridor would not appreciably change the travel speed along the corridor or result in the Delay Index exceeding 2.0, resulting in a less-than-significant impact with respect to the Delay Index on Ygnacio Valley Road.

Significance Without Mitigation: Less than significant.

Table 4.12-17 Near-Term (2016) Conditions Delay Index for Ygnacio Valley Road

<table>
<thead>
<tr>
<th>Direction</th>
<th>Near-Term</th>
<th>Near-Term With Project</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peak Hour</td>
<td></td>
</tr>
<tr>
<td>Ygnacio Valley Road Eastbound (I-680 to Oak Grove Road)</td>
<td>AM 1.2 24.7</td>
<td>PM 1.3 15.7</td>
</tr>
<tr>
<td>Ygnacio Valley Road Westbound (Oak Grove Road to I-680)</td>
<td>AM 1.2 25.0</td>
<td>PM 1.3 19.0</td>
</tr>
</tbody>
</table>

Freeway Operations

Table 4.12-18 presents the Near-Term and Near-Term With Project freeway analysis. The addition of Project traffic does not appreciably change the vehicle densities at the analysis locations, and all service levels remain the same, therefore, a less-than-significant impact would occur.

Significance Without Mitigation: Less than significant.

Pedestrian, Bicycle, and Transit

Pedestrian traffic would be generated by trips attributed to residents of the proposed Project, including trips to and from the nearby BART station, trips to nearby businesses adjacent to or in the vicinity of the Project site, and trips to the Iron Horse Trail, located a ½-mile east of the Project site. Pedestrian access to the site would be served by four locations – three at ground level and one at the second-level lobby entrance. Two entrances would be accessed directly on Lacassie Avenue, one entrance on the east side of the building with access to Lacassie Avenue, and one entrance on Ygnacio Valley Road. Additionally, two fire stair entrances – one on Ygnacio Valley Road and one on the east side of the building – would provide additional pedestrian access to the site. The ground-level pedestrian access on Lacassie Avenue would be located between the two vehicle driveways.
TABLE 4.12-18 NEAR-TERM (2016) WITH PROJECT FREEWAY OPERATIONS

<table>
<thead>
<tr>
<th>Freeway Facility</th>
<th>AM Peak</th>
<th>PM Peak</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NT (LOS/Density)</td>
<td>NT + P (LOS/Density)</td>
</tr>
<tr>
<td>Mainline Segments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-680: North of North Main Street</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NB</td>
<td>D/28.6</td>
<td>D/28.7</td>
</tr>
<tr>
<td>SB</td>
<td>F/In Queue</td>
<td>F/In Queue</td>
</tr>
<tr>
<td>I-680: South of Olympic Blvd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NB</td>
<td>C/23.5</td>
<td>C/23.6</td>
</tr>
<tr>
<td>SB</td>
<td>C/21.0</td>
<td>C/21.0</td>
</tr>
<tr>
<td>SR-24: West of I-680</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EB</td>
<td>C/19.0</td>
<td>C/19.0</td>
</tr>
<tr>
<td>WB</td>
<td>D/29.4</td>
<td>D/29.6</td>
</tr>
<tr>
<td>Ramp Junctions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-680: Ygnacio Valley Road Off Ramp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NB</td>
<td>B/18.2</td>
<td>B/18.2</td>
</tr>
<tr>
<td>I-680: Ygnacio Valley Road On Ramp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB</td>
<td>F/In Queue</td>
<td>F/In Queue</td>
</tr>
<tr>
<td>I-680: North Main Street Off Ramp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SB</td>
<td>F/In Queue</td>
<td>F/In Queue</td>
</tr>
<tr>
<td>I-680: North Main Street On Ramp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NB</td>
<td>C/20.8</td>
<td>C/20.9</td>
</tr>
<tr>
<td>SR-24: Ygnacio Valley Road On Ramp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WB</td>
<td>D/34.9</td>
<td>D/34.9</td>
</tr>
<tr>
<td>SR-24: Ygnacio Valley Road Off Ramp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EB</td>
<td>C/25.6</td>
<td>C/25.6</td>
</tr>
<tr>
<td>SR-24: Mt. Diablo Blvd On Ramp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WB</td>
<td>C/24.9</td>
<td>C/25.0</td>
</tr>
<tr>
<td>SR-24: Mt. Diablo Blvd Off Ramp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EB</td>
<td>C/21.0</td>
<td>C/21.0</td>
</tr>
</tbody>
</table>

The proposed Project would include a 10-foot-wide sidewalk on the north side of Lacassie Avenue, and a 10-foot sidewalk along the west side of the Project site adjacent to the I-680/SR 24 off-ramp to Ygnacio Valley Road.

The proposed Project does not include improvements to the bicycle network; however, bicycle parking would be provided on the ground level of the parking garage. The existing bicycle facilities previously described are adequate to accommodate bicyclists from the proposed Project. The City also requires bicycle parking to be at least 10 percent of the automobile parking supply, or 23 spaces for this Project. The Project would provide 24 secure bicycle parking spaces on the ground level of the parking garage, which is sufficient to meet the bicycle code requirement.
The proposed Project does not propose any changes to transit facilities, and because of the numerous routes and frequency of the County Connection and BART that would serve the Project site, impacts to transit facilities would be less than significant.

Significance Without Mitigation: Less than significant.

Parking

For residential uses within a ½-mile of a BART station, the City of Walnut Creek requires 1.0-space for each studio apartment, 1.25 spaces for each one-bedroom apartment, and 1.5 spaces for each two-bedroom apartment. The Project is required to provide 223 parking spaces, as shown in Table 4.12-19. The proposed Project would include 186 assigned resident parking spaces and 37 unassigned visitor parking, which, combined, is sufficient to meet parking code requirement.

The Americans with Disability Act requires that 2 percent of parking spaces are designated as accessible stalls, or five stalls for this Project. The Project proposes four assigned accessible stalls and three unassigned accessible stalls for a total of seven accessible stalls, which is sufficient to meet the parking code requirement. Two of the accessible stalls would be van accessible. The accessible stalls would be on the ground level of the parking garage.

Because the proposed Project would meet all relevant parking requirements, the impact with respect to parking would be less than significant.

Significance Without Mitigation: Less than significant.

TABLE 4.12-19 CITY CODE AUTOMOBILE PARKING REQUIREMENTS

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Size</th>
<th>Parking Code Requirement</th>
<th>Parking Spaces Required</th>
<th>Total Parking Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>35 Studio Units</td>
<td>1.0</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>110 1-bedroom Units</td>
<td>1.25</td>
<td>138</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td>33 2-bedroom Units</td>
<td>1.5</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Total Requirement</td>
<td></td>
<td></td>
<td></td>
<td>223</td>
</tr>
</tbody>
</table>

Source: City of Walnut Creek Municipal Code 10-2.3.206, Table C.

TRAF-2

The proposed Project would not conflict with an applicable congestion management program, including, but not limited to level of service standards and travel demand measures, or other standards established by the county congestion management agency for designated roads or highways.
As described above, the Contra Costa County Congestion Management Program 2011 sets forth regulations and policies to keep traffic levels manageable. Under both the existing and baseline with Project conditions, all intersections within the Project site would operate at existing levels. As such, the proposed Project would not conflict with an applicable congestion management plan, and the impact would, therefore, be less than significant.

Significance Without Mitigation: Less than significant.

| TRAF-3 | The proposed Project would not substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment). |

The proposed Project is not proposing any changes to design features (e.g., sharp curves or dangerous intersections) or incompatible uses. The proposed Project would include a total of 223 parking stalls accessed by one driveway on Lacassie Avenue, with a second driveway on Lacassie Avenue that will provide access for residential loading purposes. Although two driveways would be provided, the design is not expected to result in or substantially increase hazards due to design. Additionally, no roadway improvements are proposed under the Project; therefore, the impact would be less than significant.

Significance Without Mitigation: Less than significant.

4.12.7 CUMULATIVE IMPACTS

| TRAF-4 | The proposed Project, in combination with past, present and reasonably foreseeable projects, would result in less than significant cumulative impacts with respect to transportation and traffic. |

Intersection Levels of Service

Peak hour intersection operations for the non-Ygnacio Valley Road intersections were evaluated using the CCTALOS method presented previously, as presented in Table 4.12-20. As shown, the Olympic Boulevard/I-680 Northbound Ramps intersection is projected to degrade to an unacceptable level of service F; however, as the additional Project traffic would not increase the v/c ratio by more than 0.05 the impact would, therefore, be considered less than significant.

Under cumulative without project conditions, the unsignalized North California Boulevard/Cole Avenue intersection would meet the peak hour signal warrant for the PM peak hour. Because the intersection would meet the peak hour signal warrant without the Project, the impact of the Project to the intersection is considered less than significant.
Table 4.12-20 Cumulative (2030) with Project Peak Hour Level of Service

<table>
<thead>
<tr>
<th>Location</th>
<th>Control</th>
<th>Peak Hour</th>
<th>V/C<sup>b</sup></th>
<th>LOS<sup>c</sup></th>
<th>V/C<sup>b</sup></th>
<th>LOS<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ygnacio Valley Road/Hillside Avenue/I-680 SB On-Ramp</td>
<td>Signal</td>
<td>AM</td>
<td>0.47</td>
<td>A</td>
<td>0.47</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.63</td>
<td>B</td>
<td>0.63</td>
<td>B</td>
</tr>
<tr>
<td>2. Ygnacio Valley Road/Oakland Boulevard</td>
<td>Signal</td>
<td>AM</td>
<td>0.44</td>
<td>A</td>
<td>0.44</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.49</td>
<td>A</td>
<td>0.49</td>
<td>A</td>
</tr>
<tr>
<td>3. Ygnacio Valley Road/North California Boulevard</td>
<td>Signal</td>
<td>AM</td>
<td>0.35</td>
<td>A</td>
<td>0.36</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.510</td>
<td>A</td>
<td>0.52</td>
<td>A</td>
</tr>
<tr>
<td>4. Ygnacio Valley Road/North Main Street</td>
<td>Signal</td>
<td>AM</td>
<td>0.63</td>
<td>B</td>
<td>0.63</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.65</td>
<td>B</td>
<td>0.65</td>
<td>B</td>
</tr>
<tr>
<td>5. North California Boulevard/Parkside Drive</td>
<td>Signal</td>
<td>AM</td>
<td>0.44</td>
<td>A</td>
<td>0.44</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.49</td>
<td>A</td>
<td>0.49</td>
<td>A</td>
</tr>
<tr>
<td>6. North California Boulevard/North Main Street</td>
<td>Signal</td>
<td>AM</td>
<td>0.35</td>
<td>A</td>
<td>0.36</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.510</td>
<td>A</td>
<td>0.52</td>
<td>A</td>
</tr>
<tr>
<td>7. North California Boulevard/Lacassie Avenue</td>
<td>Signal</td>
<td>AM</td>
<td>0.53</td>
<td>A</td>
<td>0.53</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.56</td>
<td>A</td>
<td>0.56</td>
<td>A</td>
</tr>
<tr>
<td>8. North California Boulevard/Cole Avenue<sup>d</sup></td>
<td>SSSC</td>
<td>AM</td>
<td>0.8 (48)</td>
<td>A (E)</td>
<td>0.9 (51)</td>
<td>A (F)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>4.7 (91)</td>
<td>A (F)</td>
<td>5.0 (96)</td>
<td>A (F)</td>
</tr>
<tr>
<td>9. North California Boulevard/Civic Drive/Trinity Avenue</td>
<td>Signal</td>
<td>AM</td>
<td>0.53</td>
<td>A</td>
<td>0.53</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.56</td>
<td>A</td>
<td>0.56</td>
<td>A</td>
</tr>
<tr>
<td>10. North California Boulevard/Bonanza Street</td>
<td>Signal</td>
<td>AM</td>
<td>0.42</td>
<td>A</td>
<td>0.42</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.62</td>
<td>B</td>
<td>0.62</td>
<td>B</td>
</tr>
<tr>
<td>11. Mount Diablo Boulevard/Boulevard Way</td>
<td>Signal</td>
<td>AM</td>
<td>0.53</td>
<td>A</td>
<td>0.54</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.63</td>
<td>B</td>
<td>0.63</td>
<td>B</td>
</tr>
<tr>
<td>12. Mount Diablo Boulevard/Bonanza Street</td>
<td>Signal</td>
<td>AM</td>
<td>0.22</td>
<td>A</td>
<td>0.37</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.50</td>
<td>A</td>
<td>0.50</td>
<td>A</td>
</tr>
<tr>
<td>13. California Boulevard/Mount Diablo Boulevard</td>
<td>Signal</td>
<td>AM</td>
<td>0.49</td>
<td>A</td>
<td>0.50</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.69</td>
<td>B</td>
<td>0.70</td>
<td>C</td>
</tr>
<tr>
<td>14. Olympic Boulevard/I-680 Southbound Off-Ramp</td>
<td>Signal</td>
<td>AM</td>
<td>0.50</td>
<td>A</td>
<td>0.50</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.55</td>
<td>A</td>
<td>0.55</td>
<td>A</td>
</tr>
<tr>
<td>15. Olympic Boulevard/I-680 Northbound Ramps</td>
<td>Signal</td>
<td>AM</td>
<td>0.66</td>
<td>B</td>
<td>0.66</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>1.02</td>
<td>F</td>
<td>1.02</td>
<td>F</td>
</tr>
<tr>
<td>16. Olympic Boulevard/Alpine Road</td>
<td>Signal</td>
<td>AM</td>
<td>0.45</td>
<td>A</td>
<td>0.45</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.40</td>
<td>A</td>
<td>0.40</td>
<td>A</td>
</tr>
<tr>
<td>17. South California Boulevard/Olympic Boulevard</td>
<td>Signal</td>
<td>AM</td>
<td>0.47</td>
<td>A</td>
<td>0.467</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PM</td>
<td>0.61</td>
<td>B</td>
<td>0.62</td>
<td>B</td>
</tr>
</tbody>
</table>

Notes:
- **a.** Signal = signalized intersection
- **b.** V/C = Volume-to-Capacity Ratio
- **c.** LOS = Level of service.
- **d.** LOS given as Average LOS (LOS for worst (eastbound) approach).

The HCM analyses of the ramp intersections are included in Appendix H of this Draft EIR. With the addition of Cumulative traffic, the service levels change at the Ygnacio Valley Road/I-680 Northbound Off-Ramp from LOS E to LOS F in the AM Peak Hour; and at the Olympic Boulevard/I-680 NB On-Ramp from LOS B to LOS C in the AM Peak Hour. Although the Ygnacio Valley Road/I-680 NB Off-Ramp is projected to operate as LOS F, relative to Cumulative No Project conditions, the Project traffic does not cause the service levels to change at the five ramp intersections, and delays increase by less than one second. As such, the increase in delay is inconsequential and the impact would be considered less than significant.

Significance Without Mitigation: Less than significant.

Delay Index on Ygnacio Valley Road

The Delay Index was calculated for Ygnacio Valley Road from Oak Grove Road to I-680, as presented in Table 4.12-21. Average speed is expected to decrease along the corridor; however, the traffic pattern changes expected to occur by 2030, including changes from the proposed Project to the Ygnacio Valley Road corridor would not appreciably change the travel speed along the corridor or result in the Delay Index exceeding 2.0, resulting in a less-than-significant cumulative impact to Ygnacio Valley Road.

Significance Without Mitigation: Less than significant.

TABLE 4.12-21 CUMULATIVE (2030) WITH PROJECT DELAY INDEX FOR YGNACIO VALLEY ROAD

<table>
<thead>
<tr>
<th>Direction</th>
<th>Cumulative</th>
<th>Cumulative With Project</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peak Hour</td>
<td>Average Speed (mph)</td>
</tr>
<tr>
<td>Ygnacio Valley Road Eastbound (I-680 to Oak Grove Road)</td>
<td>AM</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>1.2</td>
</tr>
<tr>
<td>Ygnacio Valley Road Westbound (Oak Grove Road to I-680)</td>
<td>AM</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Source: Fehr & Peers, 2013.

Freeway Operations

Table 4.12-22 presents the freeway analysis for the Cumulative and Cumulative With Project cases. The addition of Project traffic does not appreciably change the vehicle densities at the analysis locations, and all service levels remain the same; therefore, the impact to freeway operations under cumulative conditions would be less than significant.

Significance Without Mitigation: Less than significant.
Table 4.12-22 Cumulative With Project Freeway Operations

<table>
<thead>
<tr>
<th>Freeway Facility</th>
<th>AM Peak</th>
<th></th>
<th>PM Peak</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mainline Segments</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-680: North of North Main Street</td>
<td>NB</td>
<td>D/28.8</td>
<td>E/37.2</td>
<td>E/37.3</td>
</tr>
<tr>
<td></td>
<td>SB</td>
<td>F/In Queue</td>
<td>F/In Queue</td>
<td>C/20.8</td>
</tr>
<tr>
<td>I-680: South of Olympic Blvd</td>
<td>NB</td>
<td>C/24.1</td>
<td>F/In Queue</td>
<td>F/In Queue</td>
</tr>
<tr>
<td></td>
<td>SB</td>
<td>C/21.3</td>
<td>C/21.3</td>
<td>C/21.3</td>
</tr>
<tr>
<td>SR-24: West of I-680</td>
<td>EB</td>
<td>C/19.6</td>
<td>E/35.2</td>
<td>E/35.2</td>
</tr>
<tr>
<td></td>
<td>WB</td>
<td>D/30.1</td>
<td>C/25.2</td>
<td>C/25.2</td>
</tr>
<tr>
<td>Ramp Juctions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-680: Ygnacio Valley Road Off Ramp</td>
<td>NB</td>
<td>B/19.5</td>
<td>F/In Queue</td>
<td>F/In Queue</td>
</tr>
<tr>
<td>I-680: Ygnacio Valley Road On Ramp</td>
<td>SB</td>
<td>F/In Queue</td>
<td>F/In Queue</td>
<td>F/In Queue</td>
</tr>
<tr>
<td>I-680: North Main Street Off Ramp</td>
<td>SB</td>
<td>F/In Queue</td>
<td>F/In Queue</td>
<td>A/8.2</td>
</tr>
<tr>
<td>I-680: North Main Street On Ramp</td>
<td>NB</td>
<td>C/21.0</td>
<td>F/In Queue</td>
<td>F/In Queue</td>
</tr>
<tr>
<td>SR-24: Ygnacio Valley Road On Ramp</td>
<td>WB</td>
<td>E/35.5</td>
<td>D/31.3</td>
<td>D/31.3</td>
</tr>
<tr>
<td>SR-24: Ygnacio Valley Road Off Ramp</td>
<td>EB</td>
<td>C/26.7</td>
<td>E/36.9</td>
<td>E/36.9</td>
</tr>
<tr>
<td>SR-24: Mt. Diablo Blvd On Ramp</td>
<td>WB</td>
<td>C/25.5</td>
<td>C/24.7</td>
<td>C/24.8</td>
</tr>
<tr>
<td>SR-24: Mt. Diablo Blvd Off Ramp</td>
<td>EB</td>
<td>C/21.1</td>
<td>D/31.1</td>
<td>D/31.2</td>
</tr>
</tbody>
</table>

Pedestrian, Bicycle, and Transit

As discussed above, the proposed Project would result in the net addition of approximately 338 residents; however, as previously mentioned, that number is conservative given that most of the residential units will be one-bedroom units, totaling 178 units. The additional residents would be accommodated by the numerous public transportation options surrounding the Project site as a result of its close proximity to the Walnut Creek BART Station, and a number of Class I, II, and III bike lanes and routes, including the nearby Iron Horse Trail.
Accordingly, it is highly unlikely that the proposed Project would result in cumulative impacts to the overall pedestrian, bicycle, and/or transit network and, therefore, the cumulative impact would be less than significant.

Significance Without Mitigation: Less than significant.

Parking

The proposed Project would include a total of 223 parking stalls to accommodate its residents, and is sufficient to meet the parking requirements of the City of Walnut Creek. Although an increase in vehicles would result from residents and visitors of residents, the proximity to public transit, including BART and the County Connection, would help to alleviate some of the impacts associated with vehicle use. Additionally, because the number of parking stalls would be compliant with City of Walnut Creek requirements, the cumulative impact would be less than significant.

Significance Without Mitigation: Less than significant.

4.12.8 SUMMARY OF SIGNIFICANT IMPACTS AND MITIGATION MEASURES

The Project would not result in any significant Project-specific or cumulative impacts to transportation and traffic; therefore, no mitigation measures are required.
5. Alternatives to the Proposed Project

The following discussion is intended to inform the public and decision makers of feasible alternatives to the proposed Project that would avoid or substantially lessen any significant effects of the proposed Project.

The CEQA Guidelines set forth the intent and extent of alternatives analysis to be provided in an EIR. Section 15126.6(a) of the CEQA Guidelines states that:

An EIR shall describe a range of reasonable alternatives to the project, or the location of the project, which would feasibly attain most of the basic objectives of the project but would avoid or substantially lessen any of the significant effects of the project, and evaluate the comparative merits of the alternatives. An EIR need not consider every conceivable alternative to a project. Rather it must consider a reasonable range of potentially feasible alternatives that will foster informed decision making and public participation. An EIR is not required to consider alternatives which are infeasible. The lead agency is responsible for selecting a range of project alternatives for examination and must publicly disclose its reasoning for selecting those alternatives. There is no ironclad rule governing the nature or scope of the alternatives to be discussed other than the rule of reason.

5.1 PURPOSE

The alternatives evaluated in this Draft EIR were developed consistent with Section 15126.6(b) of the CEQA Guidelines, which states that:

Because an EIR must identify ways to mitigate or avoid the significant effects that a project may have on the environment (Public Resources Code Section 21002.1), the discussion of alternatives shall focus on alternatives to the project or its location which are capable of avoiding or substantially lessening any significant effects of the project, even if these alternatives would impede to some degree the attainment of the project objectives, or would be more costly.

5.2 POTENTIALLY SIGNIFICANT IMPACTS

All of the potential environmental impacts associated with development of the proposed Project were found to be either less than significant without mitigation or less than significant with mitigation. No significant and unavoidable impacts would occur as a result of construction and operation of the proposed Project. A summarized list of the potential impacts is listed below.
5.2.1 LESS THAN SIGNIFICANT IMPACTS WITHOUT MITIGATION

The impacts that would be less than significant without mitigation include the following:

Aesthetics

- The proposed Project would not have a substantial adverse effect on a scenic vista and would not substantially degrade the existing visual character or quality of the site and its surroundings.
- The proposed Project, in combination with past, present and reasonably foreseeable projects, would result in less than significant cumulative impacts with respect to aesthetics.

Air Quality

- The proposed Project would not conflict with or obstruct implementation of the applicable air quality plan.
- During operation, the proposed Project would not violate any air quality standard or contribute substantially to an existing or projected air quality violation.
- The proposed Project would not result in a cumulatively considerable net increase of any criteria pollutant for which the Project region is in nonattainment under an applicable federal or State ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors).
- The proposed Project would not expose on-site sensitive receptors to substantial pollutant concentrations from off-site emission sources.
- The proposed Project would not expose sensitive receptors to substantial pollutant concentrations from Carbon Monoxide (CO) Hotspots.
- The Project, in combination with past, present, and reasonably foreseeable projects, would not cumulatively contribute to air quality impacts in the San Francisco Bay Area Air Basin from construction and operational criteria air pollutant emissions, and from on-site construction community risk hazards.

Biological Resources

- The proposed Project, in combination with past, present and reasonably foreseeable projects, would result in less than significant cumulative impacts with respect to biological resources.

Cultural Resources

- The proposed Project would not cause a substantial adverse change in the significance of a historical resource as defined in Section 15064.5.
- The proposed Project, in combination with past, present and reasonably foreseeable projects, would result in less than significant cumulative impacts with respect to Cultural Resources.

1 As discussed in Chapter 4.3, Aesthetics, of this Draft EIR, pursuant to Senate Bill 743, aesthetic impacts of residential or mixed use projects located on an infill site in a "transit priority area" "shall not be considered significant impacts on the environment." For that reason, the information related to potential aesthetics impacts is for informational purposes only.
Greenhouse Gas (GHG) Emissions
- The proposed Project would not generate GHG emissions, either directly or indirectly, that would have a significant impact on the environment.
- The proposed Project would have the potential to be inconsistent with measures adopted for the purpose of reducing GHG emissions to achieve the City’s local GHG reduction target, as outlined in the City of Walnut Creek’s Climate Action Plan.
- The proposed Project, in combination with past, present, and reasonably foreseeable projects, would not result in a significant cumulative impact with respect to GHG emissions.

Land Use and Planning
- The proposed Project would not conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the Project (including, but not limited to the general plan, specific plan, local coastal program, or zoning ordinance) adopted for the purpose of avoiding or mitigating an environmental effect.
- The proposed Project, in combination with past, present and reasonably foreseeable projects, would result in a less than significant cumulative impacts with respect to land use and planning.

Noise
- The proposed Project would not result in the exposure of persons to or generation of excessive groundborne vibration or ground borne noise levels.
- The proposed Project would not result in a substantial permanent increase in ambient noise levels in the Project vicinity above levels existing without the Project.
- The proposed Project, in combination with past, present and reasonably foreseeable projects, would result in less than significant cumulative impacts with respect to noise.

Population and Housing
- The proposed Project would not displace substantial numbers of existing housing or people, necessitating the construction of replacement housing elsewhere.
- The proposed Project, in combination with past, present and reasonably foreseeable projects, would result in less than significant cumulative impacts with respect to population and housing.

Public Services
- The proposed Project would not result in the need for new or physically altered fire protection or police service facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives.
- The proposed Project, in combination with past, present and reasonably foreseeable projects, would result in less than significant cumulative impacts with respect to fire protection and police services.

Transportation and Traffic
The proposed Project would not conflict with an applicable plan, ordinance or policy establishing measures of effectiveness for the performance of the circulation system, taking into account all modes of transportation including mass transit and non-motorized travel and relevant components of the circulation system, including but not limited to intersections, streets, highways and freeways, pedestrian and bicycle paths, and mass transit under the following scenarios:

- Existing with Project
- Near-Term (2016) With Project Traffic Conditions
- Cumulative (2030) with project Traffic Conditions

The proposed Project would not conflict with an applicable congestion management program, including, but not limited to level of service standards and travel demand measures, or other standards established by the county congestion management agency for designated roads or highways.

The proposed Project would not substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment).

The proposed Project, in combination with past, present and reasonably foreseeable projects, would result in less than significant cumulative impacts with respect to transportation and traffic.

5.2.2 LESS THAN SIGNIFICANT IMPACTS WITH MITIGATION

The impacts that would be potentially significant, but less-than-significant with mitigation include the following:

Air Quality

- During construction, the proposed Project could have the potential to violate an air quality standard or contribute substantially to an existing or projected air quality violation.

- The proposed Project would have the potential to expose off-site sensitive receptors to substantial pollutant concentrations from construction activities.

- The Project, in combination with past, present, and reasonably foreseeable projects, could cumulatively contribute to air quality impacts in the San Francisco Bay Area Air Basin to off-site construction community risk hazards.

Biological Resources

- The proposed Project could potentially have a substantial adverse effect, either directly or through habitat modifications, on species identified as candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Wildlife or United States Fish and Wildlife Service.
Cultural Resources

- The proposed Project would have the potential to cause a significant impact to an archaeological resource pursuant to Section 15064.5 of the CEQA Guidelines.
- The proposed Project would have the potential to directly or indirectly destroy a unique paleontological resource or site, or unique geologic feature.

Noise

- The proposed Project would result in the exposure of persons to or generation of noise levels in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies.
- The proposed Project would have the potential to result in a substantial temporary or periodic increase in ambient noise levels in the Project vicinity above levels existing without the Project.

The choice of alternatives to the proposed Project for analysis in this Draft EIR focused on those that would further reduce and avoid the impacts found to be potentially significant, but less than significant with mitigation measures, as listed above.

5.3 PROJECT OBJECTIVES

As stated above, the range of potential alternatives to the project shall include those that could feasibly accomplish most of the basic objectives of the proposed Project. The proposed Project includes the development of a high-density apartment building, consisting of 178-units with associated amenities and two levels of subterranean parking directly across from the Walnut Creek BART Station. The Project will seek to accomplish the following objectives:

- Redevelop an underutilized property to provide a high-quality, high-density residential apartment project directly across Ygnacio Valley Road from the Walnut Creek BART station that provides a well-designed and well-situated residential community for current and future residents desiring to reside in a transit friendly environment in Walnut Creek with transit connectivity to the larger Bay Area.
- Use the architectural design of the building and associated site hardscape/landscaping features to create a strong statement of “entry” or “gateway” for those arriving by car or BART into Walnut Creek, embellished by using artwork and prominent architectural features;
- Utilize the sloping topography of the site and architectural design to harmonize and establish a contextual relationship between this high density development and the surrounding environments located on the each side of the property, minimizing the aesthetic impact of parking.
- Build a project consistent with the goals of the Built Environment Element contained in General Plan 2025, including Policy 10.1 to “support the development of high-density residential near and around the Walnut Creek and Pleasant Hill BART stations,” Policy 12.2 to “support infill and redevelopment in existing urban areas,” and Goal 15 to “enhance connectivity and mobility throughout the city.”
alternatives to the proposed project

- Build a project consistent with the City’s Priority Development Area (PDA) designation by the Association of Bay Area Governments (ABAG) and the Metropolitan Transportation Commission (MTC) through the Bay Area’s Regional FOCUS program, which was intended to encourage high density new development in close proximity to transit nodes that will help to reduce GHG emissions through a reduction in vehicle trips. This objective is also consistent with the goals of the 2011 Climate Action Plan which encourages a conversion of vehicular trips to non-vehicular trips or transit trips (Transit and Land Use Goal 3);

- Build a project consistent with the intent of the proposed West Downtown Specific Plan Area with its primary purpose to facilitate new commercial and residential development in proximity to the BART station and to create opportunities for increased use of transit, pedestrian and bike routes within the City’s Priority Development Area. This objective will be achieved by enhancing and activating the pedestrian and bicycle connection from Lacassie Avenue to the BART station through landscaping and new bike lanes and providing parking for residents and visitors consistent with BART-proximate ratios.

5.4 Selection of a Reasonable Range of Alternatives

Section 15126.6(c) of the State CEQA Guidelines states:

The range of potential alternatives to the proposed project shall include those that could feasibly accomplish most of the basic objectives of the project and could avoid or substantially lessen one or more of the significant effects. The EIR should briefly describe the rationale for selecting the alternatives to be discussed. The EIR should also identify any alternatives that were considered by the lead agency but were rejected as infeasible during the scoping process and briefly explain the reasons underlying the lead agency’s determination. Additional information explaining the choice of alternatives may be included in the administrative record. Among the factors that may be used to eliminate alternatives from detailed consideration in an EIR are: (i) failure to meet most of the basic project objectives, (ii) infeasibility, or (iii) inability to avoid significant environmental impacts.

5.4.1 Alternatives Considered and Rejected as Being Infeasible

As described above, Section 15126.6(c) of the State CEQA Guidelines requires EIRs to identify any alternatives that were considered by the lead agency but were rejected as infeasible during the scoping process, and briefly explain the reasons underlying the lead agency’s determination. Section 15126.6(c) provides that among the factors that may be used to eliminate alternatives from detailed consideration in an EIR are: (i) failure to meet most of the basic project objectives, (ii) infeasibility, or (iii) inability to avoid significant environmental impacts. The following is a discussion of alternatives that were considered and rejected, along with the reasons they were not included in the analysis.

5.4.1.1 Alternate Location

Development of an alternate site was considered and rejected as being infeasible for the proposed Project. A search for a site of similar size with close proximity to the Walnut Creek BART station in an area that was not adjacent to sensitive receptors (e.g., residential land uses) or located within 1,000 feet of substantial pollutant...
concentrations (e.g., high volume of vehicular traffic) to which future residents of the proposed Project could potentially be exposed was conducted as a means of reducing the proposed Project's significant-but-mitigable air quality and noise impacts. No such site was located. In addition, the Project Applicant does not currently own or control other potential sites for the proposed Project in the Core Area or anywhere else in Walnut Creek. Nor can the Project Applicant reasonably acquire or otherwise have access to such alternate sites (refer to Section 15126.6(f) of the CEQA Guidelines). As such, no feasible alternative locations were identified for the proposed Project.

5.4.1.2 HIGHER DENSITY RESIDENTIAL ALTERNATIVE

Under the height limits established in Measure A, a maximum building height of 89 feet could be developed on a portion of the Project site, which would afford greater density on the site (see Figure 3-5 in Chapter 3, Project Description, of this Draft EIR). However, development of a higher density alternative was considered and rejected for the Project because environmental impacts would not be reduced from those of the proposed Project.

5.4.1.3 ALTERNATE SITE PLAN ALTERNATIVE

Development of an alternate site plan was considered that would concentrate units further from I-680 to reduce potential health risks associated with substantial pollutant concentrations (e.g., high volume of vehicular traffic) to which future residents of the proposed Project could potentially be exposed. However, due to the Project's close proximity to I-680, it is not possible to implement a buffer greater than 1,000 feet from the pollution source per the Bay Area Air Quality Management District standards. Further, while an additional buffer may reduce health risks, the health risk assessment prepared for the project found potential impacts to be less than significant without mitigation. Ultimately, this alternative was rejected as being infeasible for the Project because the addition of a buffer would not meet the Project objectives (see above) and would not be necessary to reduce a significant air quality impacts.

5.4.2 ALTERNATIVES ANALYSIS

In accordance with the CEQA Guidelines, two project alternatives and the comparative merits of the alternatives are discussed below. As previously stated, the alternatives were selected because of their potential to reduce the significant impacts of the proposed Project related to air quality, biological resources, GHG emissions, noise and transportation and traffic.

The alternatives to be analyzed in comparison to the proposed Project include:

- No Project
- General Plan 2025 Buildout

The first alternative discussed is the CEQA-required No Project Alternative. The second alternatives present development conditions that would occur under the General Plan 2025 (i.e. no amendment).
5.4.3 ASSUMPTIONS AND METHODOLOGY

The anticipated means for implementation of the alternatives can influence the assessment and/or probability of impacts for those alternatives. For example, a project may have the potential to generate significant impacts, but considerations in project design may also afford the opportunity to avoid or reduce such impacts. The alternatives analysis is presented as a comparative analysis to the proposed Project. The density and extent of residential development for the alternatives varies from the proposed Project. The same set of goals and policies apply under the No Project and General Plan 2025 Buildout alternatives as the proposed Project. The estimated buildout of each alternative, as well as the proposed Specific Plan, is provided in Table 5-1.

<table>
<thead>
<tr>
<th>Alternatives</th>
<th>Total Units</th>
<th>Density</th>
<th>Project Size</th>
<th>Population</th>
<th>Maximum Height</th>
<th>Land Use</th>
<th>Zoning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed Project</td>
<td>178</td>
<td>100 du/ac</td>
<td>1.82 ac</td>
<td>381</td>
<td>60 feet</td>
<td>MFSH</td>
<td>PD</td>
</tr>
<tr>
<td>No Project</td>
<td>20</td>
<td>35 du/ac</td>
<td>1.78 ac</td>
<td>43</td>
<td>20 feet</td>
<td>MFVH</td>
<td>M-1</td>
</tr>
<tr>
<td>General Plan 2025</td>
<td>87</td>
<td>50 du/ac</td>
<td>1.78 ac</td>
<td>191</td>
<td>50 feet</td>
<td>MFVH</td>
<td>M-1</td>
</tr>
</tbody>
</table>

Key:

du/ac = dwelling unit per acre
MFVH = Multi-Family Very High, 30.1-50 du/ac
MFSH = Multi-Family Special High, 50.1-100 du/ac
M-1 = Multi-Family Residential
PD = Planned Development

The alternatives analysis is presented as a comparative analysis to the proposed Project and assumes that all applicable mitigation measures proposed for the Project would apply to each alternative. The following analysis compares the potential significant environmental impacts of the two alternatives with those of the Project-related impacts for each of the environmental topics analyzed in detail in Chapter 4, Environmental Evaluation, of this Draft EIR. The impacts of each alternative are classified as greater, less, or essentially similar to (or comparable to) the level of impacts associated with the proposed Project.

Table 5-2 summarizes the relative impacts of each of the alternatives compared to the proposed Project.

NO PROJECT ALTERNATIVE

Description

Pursuant to CEQA Guidelines Section 15126.6(e)(1), the No Project Alternative is required as part of the “reasonable range of alternatives” to allow decision makers to compare the impacts of approving the proposed Project with the impacts of taking no action or not approving the proposed Project. Under this alternative, the proposed Project would not be constructed, and the Project site would remain in its current condition.
Impact Discussion

The potential environmental impacts associated with the No Project Alternative are described below and are compared to the proposed Project.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Proposed Project</th>
<th>No Project</th>
<th>General Plan 2025</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aesthetics</td>
<td>LTS</td>
<td>></td>
<td>=</td>
</tr>
<tr>
<td>Air Quality</td>
<td>LTS/M</td>
<td>=</td>
<td>=</td>
</tr>
<tr>
<td>Biological Resources</td>
<td>LTS/M</td>
<td><</td>
<td>=</td>
</tr>
<tr>
<td>Cultural Resources</td>
<td>LTS/M</td>
<td><<</td>
<td>=</td>
</tr>
<tr>
<td>Greenhouse Gas Emissions</td>
<td>LTS/M</td>
<td><<</td>
<td>=</td>
</tr>
<tr>
<td>Land Use and Planning</td>
<td>LTS</td>
<td>></td>
<td>=</td>
</tr>
<tr>
<td>Noise</td>
<td>LTS/M</td>
<td><<</td>
<td>=</td>
</tr>
<tr>
<td>Population and Housing</td>
<td>LTS</td>
<td>=</td>
<td>=</td>
</tr>
<tr>
<td>Public Services</td>
<td>LTS</td>
<td><</td>
<td><</td>
</tr>
<tr>
<td>Transportation and Traffic</td>
<td>LTS</td>
<td><</td>
<td><</td>
</tr>
</tbody>
</table>

Notes:
- LTS Less Than Significant
- LTS/M Less Than Significant with Mitigation
- << Substantially reduced impact in comparison to the proposed project
- < Slightly reduced impact in comparison to the proposed project
- = Similar impacts in comparison to the proposed project
- > Slightly greater impact in comparison to the proposed project

Aesthetics

As discussed in Chapter 4.3, Aesthetics, of this Draft EIR, pursuant to Senate Bill 743, aesthetic impacts of residential or mixed use projects located on an infill site in a “transit priority area” “shall not be considered significant impacts on the environment.” For that reason, the information provided below is for informational purposes only.

Under the No Project Alternative, no grading, tree and vegetation removal, or new development would occur on the Project site and the existing aesthetic characteristics would remain unchanged. Currently the site is developed with a mix of older and moderately-maintained single-family and multi-family homes. The current conditions are not representative of the City’s goal for this part of Walnut Creek, which as stated in General Plan Goal 19 is to
enhance the urban design quality of the Core Area and its subareas. In addition, due to the views to surrounding open spaces, hills, and Mount Diablo that are integral to the city's identity, sense of place, and character, General Plan 2025 designates Ygnacio Valley Road, which runs parallel to the Project site to the north, and the BART line, which runs parallel to the Project site on the west, as scenic corridors, and the intersection at North California Boulevard and Ygnacio Valley Road is designated as a gateway to the city. While construction of the proposed Project would not result in an adverse effect on a scenic vista, substantially damage scenic resources, or substantially alter the visual character in the Project area, given the site's location along the City's scenic corridors and that no new development representing improvements that meet Goal 19 as described above would occur, the fact that there would be no changes to the physically deteriorating visual character on the site under the No Project Alternative, the overall aesthetics impacts would be slightly greater from those of the proposed Project.

Air Quality

Project-generated fugitive dust and other pollutant emissions associated with construction activities at the site would not occur under this alternative; thereby, eliminating the Project's significant-but-mitigable air quality impacts. Same as the proposed Project, the No Project Alternative would not conflict or obstruct the implementation of Bay Area Air Quality Air District’s 2010 Climate Action Plan or violate any air quality standards; thus, impacts would be the similar under both scenarios. Under the No Project Alternative, pollutant emissions associated with vehicle trips would not occur and emissions associated with residential development would not occur.

Under the proposed Project, the applicant would be required to implement Mitigation Measure AIR-4b, which would reduce the impacts associated with the off-site stationary, area, and mobile source emissions that would generate a substantial increase in pollutant concentrations to Project sensitive receptors (residents). Under the No Project Alternative, the existing residents would continue to be subject to this hazardous condition. Therefore, health risk impacts would be reduced under the proposed Project.

While no development would occur under the No Project Alternative, the air quality impacts under the proposed Project are fully mitigable with implementation of Mitigation Measure AIR-4a. Therefore impacts would be similar under both scenarios.

Biological Resources

Under the No Project Alternative the potential to modify habitat for any special-status species identified would not occur. No trees would be removed under the No Project Alternative; thus, no potential for conflicts with the City's Tree Preservation Ordinance would occur. This would eliminate the Project's significant-but-mitigable conflicts with local policies or ordinances protecting biological resources. Overall impacts to biological resources would be slightly reduced from those of the proposed Project under this alternative because no development on the Project site would occur.

Cultural Resources

There are no known historic resources within the Project site; therefore, impacts to known cultural resources would be the same under both the No Project Alternative and the proposed Project. However, no ground-
disturbing activities would occur under the No Project Alternative; therefore, this alternative would not have the potential to damage or destroy unknown archaeological or paleontological resources and human remains. Accordingly, the No Project Alternative would result in substantially reduced impacts from those of the proposed Project.

Greenhouse Gas Emissions

Under the No Project Alternative, no new high-density housing would be constructed, subsequently, no new vehicular trips would occur. Therefore, the No Project Alternative would result in substantially reduced GHG emissions when compared to the proposed Project. However, it should be noted that by increasing density at a location immediately adjacent to the BART station, the proposed Project carries out Plan Bay Area and is more consistent with a land use pattern that minimizes reliance on vehicular travel.

Land Use and Planning

Because the No Project Alternative would not involve any new development the site would remain in its current condition. Consequently, no trees would be removed under the No Project Alternative and no potential for conflicts with the City’s Tree Preservation Ordinance would occur. However, the General Plan 2025 designates the Project site as Multi-Family Very High (MFVH) 30.1-50 dwelling units per acre (du/ac), a land use designation intended primarily for the city’s conventional apartment complexes. The site currently has a total of 20 units, which makes the existing conditions a legal and non-conforming condition that is not in conformance with the General Plan 2025. Implementation of the proposed Project would require a General Plan Amendment to change the designation to Multi-Family Special High (MFSH), 50.1-100 du/ac in order to accommodate the Project’s 100 du/ac; thus, the proposed Project would be consistent with General Plan 2025. Thus, overall impacts related to land use would be slightly greater when compared to the proposed Project.

Noise

Because the No Project Alternative would not involve any short-term noise from construction or long-term Project noise from operation, this alternative would eliminate the Project’s significant-but-mitigable construction and long-term operational noise impacts. Therefore, noise impacts under this alternative would be substantially reduced from those of the proposed Project.

Population and Housing

While the 20 existing dwelling units and 43 existing residents would not be displaced under the No Project Alternative, the impacts would be similar to those of the proposed Project as it would adequately replace the existing housing with 158 high-density multi-family dwelling units that could accommodate up to 339 residents; thus, no new housing would need to be constructed elsewhere. In addition, the Project Applicant would pay the City’s established Affordable Housing Impact Fee upon issuance of the building permit or dedicate land as allowed

2 The proposed Project would result in 178 new units, a net gain of 158 (178 new units minus 20 existing units.) Applying the Association of Bay Area Governments projections of the average household size of 2.14 persons for Walnut Creek in 2025, the proposed Project would result in 381 new residents, a net gain of 339 (381 new residents minus 43 existing residents.)
in the City's Inclusionary Housing Ordinance under Municipal Code Chapter 2, Zoning, Article 9, Inclusionary Housing. Because inclusionary housing fees are paid on a per unit basis the proposed Project's greater density on the same site would proportionately provide the City with more affordable housing than under the No Project scenario. Furthermore, the Project Applicant would also be required to provide relocation assistance to households displaced as a result of the Project pursuant to Section 9-15.05 of the Walnut Creek Municipal Code.

While the provision of more affordable housing is a greater benefit to the City, the impacts to population and housing under the No Project Alternative would be similar to those under the proposed Project as it adequately addresses the replacement of housing and the relocation of displaced persons proportionate to the loss of homes and displaced persons.

Public Services (Fire and Police)

While impacts to public services would be less than significant without mitigation under the proposed Project, the No Project Alternative would result in no new development on the Project site and would not change the type or frequency of fire and police protection services required. Accordingly, overall impacts to public services would be slightly reduced when compared to those of the proposed Project.

Traffic and Transportation

While impacts to transportation and traffic under the proposed Project would be less than significant without mitigation, under the No Project Alternative, no new development on the site would occur and no new traffic trips would be generated. As such, no traffic impacts as a result of new development on the Project site would occur. Accordingly, overall impacts to transportation and traffic would be slightly reduced when compared to those of the proposed Project.

Relationship of the Alternative to the Objectives

Under the No Project Alternative, the proposed Project would not be approved and a high-density residential development across from the Walnut Creek BART station would not be constructed. Accordingly, this alternative does not meet any of the Project objectives.

5.4.3.2 GENERAL PLAN 2025 BUILDOUT ALTERNATIVE

Description

The General Plan 2025 Buildout Alternative would be similar to as the proposed Project in overall character, but developed at half the density and at a lower height. This alternative assumes that development on the Project site would occur as permitted under the existing General Plan 2025 land use designation and Zoning district. Under this alternative no General Plan or Zoning Ordinance amendments would occur and the site would remain designated as Multi-Family Very High (MFVH, 30.1-50 du/ac) and within the Multi-Family Residential (M-1)
Zoning district. As such, this alternative evaluates the maximum development under this alternative; 87 high-density, multi-family units accommodating 191 residents. Given the site currently has 20 units and 43 residents, this alternative would result in a net increase of 67 units and 148 residents. The maximum height permitted under this alternative would be 50 feet (see Figure 3-4, in Chapter 3, Project Description, of this Draft EIR).

Under the General Plan 2025 Buildout Alternative all other aspects of the proposed Project's components related to the construction schedule, apartment amenities, circulation, emergency access BART Proximate parking standards, landscaping, lighting and public art would be the same or scaled back proportionately.

Impact Discussion

The potential environmental impacts associated with the General Plan 2025 Buildout Alternative are described below and are compared to the proposed Project.

Aesthetics

As discussed in Chapter 4.3, Aesthetics, of this Draft EIR, pursuant to Senate Bill 743, aesthetic impacts of residential or mixed use projects located on an infill site in a “transit priority area” “shall not be considered significant impacts on the environment.” For that reason, the information provided below is for informational purposes only.

Implementation of the proposed Project would not result in an adverse effect on a scenic vista, substantially damage scenic resources, or substantially alter the visual character in the Project area.

As with the proposed Project, the General Plan 2025 Buildout Alternative would allow a high-density, multi-family residential development on the Project site. While development under this alternative would result in reduced density (50 du/"ac compared to 100 du/"ac) and building height (50 feet compared to 60 feet) than that of the proposed Project, development allowed by the General Plan 2025 Buildout Alternative would alter the existing setting the same as the proposed Project.

Same as the proposed Project, development under this alternative would be required to comply with the setback and stepback requirements outlined in the General Plan 2025 that are designed to protect the views of the surrounding open spaces, hills, and Mount Diablo from Ygnacio Valley Road and the BART line. Furthermore, the design of the proposed Project would also be subject to review by the City’s Design Review Commission to ensure consistency with the City’s Design Review Guidelines.

The changes to the configuration of the high-density, multi-family residential development on the site under the General Plan 2025 Buildout Alternative would not correspondingly reduce impacts related to visual resources in comparison to the proposed Project as both scenarios would involve introducing more intense urban development.

3 This calculation is based on the Association of Bay Area Governments (ABAG) projections of the average household size of 2.14 persons for Walnut Creek in 2025, as described in Chapter 4.8 of this Draft EIR.
on a generally underdeveloped site. In light of the foregoing discussion, in regard both to substantial adverse effects on a scenic vista, the General Plan 2025 Buildout Alternative would have a similar impact in comparison to the proposed Project.

Air Quality

Development proposed under the General Plan 2025 Buildout Alternative would occur on the same Project site as the proposed Project with less high-density housing than the proposed Project (87 units compared to 178 units).

Project-generated fugitive dust and other pollutant emissions associated with construction activities at the site would occur the same as the proposed Project under this alternative; thereby, resulting in the same significant-but-mitigable air quality impacts. Same as the proposed Project, the General Plan 2025 would not conflict or obstruct the implementation of Bay Area Air Quality Air District's 2010 Climate Action Plan or violate any air quality standards; thus, impacts would be the similar under both scenarios. Under the General Plan 2025 Buildout Alternative, pollutant emissions associated with vehicle trips and emissions associated with residential development would be slightly less than the proposed Project.

As with the proposed Project, the General Plan 2025 Buildout Alternative would have less than significant impacts associated with the off-site stationary, area, and mobile source emissions. Therefore, health risk impacts would be the similar to those of the proposed Project.

Accordingly, development under the General Plan 2025 Buildout Alternative would result in similar impacts when compared to the proposed Project.

Biological Resources

Under the General Plan 2025 Buildout Alternative, the same site would be redeveloped with less high-density residential development when compared to the proposed Project (87 units compared to 178 units). While this alternative would be less intense than the proposed Project, development under both scenarios would require the removal of all on-site vegetation. Therefore, in regard to substantial adverse effects, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Wildlife or the United States (U.S.) Fish and Wildlife Service, the General Plan 2025 Buildout Alternative would have a similar impact in comparison to the proposed Project.

Under the General Plan 2025 Buildout Alternative, development would proceed as currently planned for and allowed under existing land use designations. The City policies for the protection of biological resources and existing ordinances, including City’s Tree Preservation Ordinance, would remain in place. Therefore, in regard both to conflicts with any local policies or ordinances protecting biological resources the General Plan 2025 Buildout Alternative would result in similar impacts in comparison to the proposed Project.

In summary, the development under the No Project Alternative would, overall, result in similar impacts to biological resources when compared to the proposed Project.
Cultural Resources

There are no known historic resources within the Project site; therefore, impacts to known cultural resources would be the same under both the General Plan 2025 Buildout Alternative and the proposed Project.

The General Plan 2025 contains policies related to the protection of cultural resources and future development that would apply to both the proposed Project and this alternative. In addition, development under both scenarios would be subject to federal and State regulations. While less development would occur under this alternative than under the proposed Project, development under the General Plan 2025 Buildout Alternative would generally occur on the same amount of disturbed but undeveloped land as the proposed Project. Therefore, in regard to substantial adverse changes in the significance of either a historical or an archaeological resources and direct or indirect destruction of unique paleontological or geologic resources, sites, or features, the General Plan 2025 Buildout Alternative would result in similar impacts in comparison to the proposed Project.

Greenhouse Gas Emissions

Development proposed under the General Plan 2025 Buildout Alternative would occur within the same boundaries as the proposed Project with less high-density housing (87 units compared to 178 units).

Under the proposed Project, the construction of the proposed apartments would generate GHG emissions that would not either directly or indirectly have a significant impact on the environment. The proposed Project would not conflict with the City’s General Plan 2025, the proposed West Downtown Specific Plan or the Metropolitan Transportation Commission/Association of Bay Area Governments’ Plan Bay Area for the purpose of reducing the emissions of GHGs through vehicular trip reduction by locating higher density new development in close proximity to transit nodes, like the Walnut Creek BART station and would not conflict with the City’s 2011 CAP. Because development under the General Plan 2025 Buildout Alternative would be held to the same standards as that of the proposed Project, it would result in similar impacts when compared to the proposed Project.

Land Use and Planning

Development proposed under the General Plan 2025 Buildout Alternative would generally be the same as that of the proposed Project, but would not result in a General Plan or Zoning Ordinance Amendment. The residential development under this alternative would have less high-density housing (87 units compared to 178 units).

There are no land use conflicts under the proposed Project or under the General Plan 2025 Buildout Alternative. While the General Plan land use designation and Zoning district are different under the proposed Project and the General Plan 2025 Buildout Alternative, both are consistent with their respective designations and districts. Under both scenarios all of the on-site trees would be removed; thus, the potential for conflicts with the City’s Tree Preservation Ordinance would be similar to that of the proposed Project. Thus, overall impacts related to General Plan 2025 consistency would be similar under this alternative.

As noted above under the GHG emissions discussion, because the Project site is ideally suited for high-density housing in close proximity to transit nodes, like the Walnut Creek BART station, to reduce GHG emission through reduced vehicular trips, the General Plan 2025 Buildout Alternative conditions would be consistent with the goals
alternatives to the proposed project

outlined in the City’s General Plan 2025, 2011 Climate Action Plan and the proposed West Downtown Specific Plan Area. While the Plan Bay Area does not directly govern land uses within Walnut Creek, high-density development under this alternative would be consistent with this Plan as well.

Overall, land use and planning impacts would be similar under the General Plan 2025 Buildout Alternative when compared to the proposed Project.

Noise

Under the General Plan 2025 Buildout Alternative, while less high-density residential development (87 units compared to 178 units) would occur than that under the proposed Project, development under both scenarios would be subject to the same General Plan 2025 policies that regulate noise. Therefore, noise related impacts as a result of implementing the General Plan 2025 Buildout Alternative would be similar to those of the proposed Project.

Population and Housing

Under the General Plan 2025 Buildout Alternative, the 20 existing dwelling units and 43 existing residents would be displaced same as the proposed Project. The impacts would be similar to those of the proposed Project as development under the General Plan 2025 Buildout Alternative would adequately replace this housing with 87 high-density multi-family dwelling units that could accommodate up to 191 residents; thus, no new housing would need to be constructed elsewhere. In addition, the Project Applicant of the General Plan 2025 Buildout Alternative would pay the City’s established Affordable Housing Impact Fee upon issuance of the building permit or dedicate land as allowed under the City’s Inclusionary Housing Ordinance under Municipal Code Chapter 2, Zoning, Article 9, Inclusionary Housing, same as the proposed Project. Because inclusionary housing fees are paid on a per unit basis the proposed Project’s greater density on the same site would proportionately provide the City with more affordable housing than the General Plan Buildout Alternative. Furthermore, the Project Applicant would also be required to provide relocation assistance to households displaced as a result of the Project pursuant to Section 9-15.05 of the Walnut Creek Municipal Code.

While the provision of more affordable housing under the proposed Project would ultimately provide a greater benefit to the City’s affordable housing program, the impacts to population and housing under the General Plan 2025 Buildout Alternative would be similar to those under the proposed Project as both scenarios adequately address the replacement of housing and the relocation of displaced persons proportionate to the loss of homes and displaced persons that would occur in either case.

4 The General Plan 2025 Alternative would result in 87 new units, a net gain of 67 (87 new units minus 20 existing units.) Applying the Association of Bay Area Governments projections of the average household size of 2.14 persons for Walnut Creek in 2025, the General Plan 2025 Alternative would result in 187 new residents, a net gain of 144 (187 new residents minus 43 existing residents.)
Public Services (Fire and Police)

Buildout under the General Plan 2025 Buildout Alternative would result in fewer residential units (87 dwelling units compared to 178 dwelling units) and population (191 new residents compared to 381 new residents) than buildout under the proposed Project. As a result, the demand for fire and police services under the General Plan 2025 Buildout Alternative would be less. Because the estimated population of the General Plan 2025 Buildout Alternative and the proposed Project is less, the General Plan 2025 Buildout Alternative is considered to result in a slightly reduced impacts to public services when compared to the proposed Project.

Traffic and Transportation

Under the General Plan 2025 Buildout Alternative, the high-density residential development would accommodate 87 new dwelling units, which is 91 fewer units than the 178 total new dwelling units under the proposed Project; therefore, fewer trips would result under the General Plan 2025 Buildout Alternative conditions. The proposed Project would not conflict with an applicable plan, ordinance or policy establishing measures of effectiveness for the performance of the circulation system, an applicable congestion management program, and would not substantially increase hazardous conditions. Therefore, reducing the amount of high-density housing on the site would result in slightly reduced traffic related impacts under the General Plan 2025 Buildout Alternative in comparison to the proposed Project.

Relationship of the Alternative to the Objectives

Under the General Plan 2025 Buildout Alternative, the site would be redeveloped with multi-family, high-density (albeit at half of the density of the proposed Project) residential apartments across from Ygnacio Valley Road from the Walnut Creek BART station, which would provide future residents desiring to reside in a transit friendly environment in Walnut Creek with transit connectivity to the larger Bay Area. This type of development would be consistent with the goals of the Built Environment Element contained in General Plan 2025, including Policy 10.1 to “support the development of high-density residential near and around the Walnut Creek and Pleasant Hill BART stations,” Policy 12.2 to “support infill and redevelopment in existing urban areas,” and Goal 15 to “enhance connectivity and mobility throughout the city.” Additionally, development under the General Plan 2025 Buildout Alternative would also be consistent with the Plan Bay Area’s Walnut Creek West Downtown Priority Development Area and the City’s 2011 Climate Action Plan by locating high-density residential near the BART station in an effort to reduce vehicular trips and subsequently reduce GHG emissions. Furthermore, the General Plan 2025 Buildout Alternative would meet the intent of the proposed West Downtown Specific Plan Area, which is to facilitate new commercial and residential development in proximity to the BART station and to create opportunities for increased use of transit, pedestrian and bike routes within the City’s Priority Development Area. Development under this alternative would be subject to City’s Design Review Commission to ensure consistency with the City’s Design Review Guidelines, which would ensure a high-quality development at this prominent gateway to the city. Accordingly, the General Plan 2025 Buildout Alternative substantially meets all of the Project Objectives, but due to the reduced density when compared to the proposed Project, it does not fully address the objectives for high-density residential near the BART station at the same level. It also does not avoid any significant environmental impacts associated with the proposed Project.
5.4.4 ENVIRONMENTALLY SUPERIOR ALTERNATIVE

In addition to the discussion and comparison of impacts of the proposed Project and the alternatives, Section 15126.6 of the CEQA Guidelines requires that an “environmentally superior” alternative be selected and the reasons for such a selection be disclosed. In general, the environmentally superior alternative is the alternative that would be expected to generate the least amount of significant impacts. Identification of the environmentally superior alternative is an informational procedure and the alternative selected may not be the alternative that best meets the goals or needs of Walnut Creek. The Project under consideration cannot be identified as the environmentally superior alternative. Additionally, in accordance with State CEQA Guidelines Section 15126.6(e)(2), if the environmentally superior alternative is the “No Project” Alternative, the EIR shall also identify an environmentally superior alternative among the other alternatives.

As discussed in the analysis above, the General Plan 2025 Buildout Alternative would result in less development than that of the proposed Project and as shown in Table 5-2 above, would result in similar impacts to the proposed Project’s significant-but-mitigable impacts to air quality, biological and cultural resources, and noise, and would slightly reduce the less-than-significant impacts to public services (fire and police services), and transportation and traffic. In addition, the General Plan Buildout Alternative, unlike the No Project Alternative, would not increase or worsen impacts from that of the proposed Project with respect to aesthetics and land use and planning. For these reasons, the General Plan 2025 Buildout Alternative is considered the environmentally superior alternative.

In conclusion, the General Plan 2025 Buildout Alternative would generally meet the Project objectives, but substantially decrease the overall development from that of the proposed Project. As a result, the General Plan 2025 Buildout Alternative would result in similar environmental impacts as those of the proposed Project and consequently provide less affordable housing for the City of Walnut Creek. As described in Chapter 4.10, Population and Housing, due to the surge in development applications for new market rate apartment complexes, a low rental vacancy rate and increases in rents over the past year, the City is experiencing an increased demand for affordable rental housing. Therefore, while the General Plan 2025 Buildout Alternative is the environmentally superior alternative, it would not provide the greatest service to Walnut Creek with regards to affordable housing.

6. **CEQA Mandated Sections**

This chapter provides an overview of the impacts of the proposed Project based on the analyses presented in Chapters 4 through 6 of this Draft EIR. The topics covered in this chapter include growth inducement, unavoidable significant impacts, and significant irreversible changes. A more detailed analysis of the effects the Project would have on the environment and proposed mitigation measures to minimize significant impacts are provided in Chapters 4.3 through 4.12.

6.1 IMPACTS FOUND NOT TO BE SIGNIFICANT

Section 15128 of the State CEQA Guidelines states:

> “An EIR shall contain a statement briefly indicating the reasons that various possible significant effects of a project were determined not to be significant and were therefore not discussed in detail in the EIR.”

An Initial Study was prepared for the proposed Project in September 2013 and circulated with the NOP to interested agencies and the public. A copy of the Initial Study has been included in Appendix A of this Draft EIR. Based on the analysis contained in the Initial Study, it was determined that implementation of the proposed Project would not result in significant environmental impacts to the environmental impact topics listed below and therefore, are not discussed in detail in Chapters 4.3 through 4.12 of this Draft EIR.

- **Aesthetics**
 - Scenic resources within a State scenic highway
 - Light and glare
- **Air Quality**
 - Objectionable odors
- **Agricultural and Forestry Resources**
- **Biological Resources**
 - Riparian habitat/sensitive natural communities
 - Wetlands
 - Migratory wildlife corridors
- **Cultural Resources**
 - Human remains
- **Geology and Soils**
- **Hazards and Hazardous Materials**
CEQA MANDATED SECTIONS

- Hydrology and Water Quality
- Land Use
 - Physically divide an established community
 - Conflict with a Habitat Conservation Plan/Natural Community Conservation Plan
- Mineral Resources
- Population and Housing
 - Induce substantial population growth
- Public Services
 - Schools
 - Parks
 - Libraries
- Recreation
- Transportation and Traffic
 - Changes to air traffic patterns
 - Inadequate emergency access
 - Conflict with adopted transportation plans
- Utilities and Service Systems

6.2 GROWTH INDUCEMENT

Section 15126.2(d) of the CEQA Guidelines requires that an EIR discuss the ways in which a proposed Project could foster economic or population growth, or the construction of additional housing, either directly or indirectly, in the surrounding environment. Typical growth inducing factors might include the extension of urban services or transportation infrastructure to a previously unserved or under-served area, or the removal of major barriers to development. This section evaluates the proposed Project's potential to create such growth inducements. Not all aspects of growth inducement are negative; rather, negative impacts associated with growth inducement occur only where the growth associated with the Project would cause adverse environmental impacts.

The proposed Project would involve direct growth inducement through the construction of 178 new housing units. Assuming an average household size of 2.14 people as projected by ABAG for Walnut Creek in 2025, the construction of 178 residential units on the Project site could bring as many as 381 new residents to the city. As described in Chapter 4.10, Population and Housing, development of the proposed Project would be consistent with regional planning efforts.

The proposed Project is not expected to result in indirect growth inducement because all development associated with the proposed Project would occur on the Project site. The Project site is a previously developed site in the highly urbanized Core Area of Walnut Creek, and would not involve the extension of infrastructure or services to a previously unserved area.
Development of the proposed Project would involve demolition and construction activities that could generate some temporary employment opportunities; however, given the temporary nature of such opportunities, it is unlikely that construction workers would relocate to Walnut Creek as a result of the proposed Project. Thus, the proposed Project would not be considered growth-inducing from an employment perspective.

6.3 UNAVOIDABLE SIGNIFICANT IMPACTS

Section 15126.2(b) of the CEQA Guidelines requires that an EIR describe any significant impacts that cannot be avoided, even with the implementation of feasible mitigation measures. As detailed in Chapters 4.3 through 4.12 of this Draft EIR, none of the environmental impacts associated with the proposed Project were found to be significant and unavoidable.

6.4 SIGNIFICANT IRREVERSIBLE CHANGES

Section 15126.2(c) of the CEQA Guidelines requires an EIR to discuss the extent to which the proposed Project would commit nonrenewable resources to uses that future generations would probably be unable to reverse. The three CEQA-required categories of irreversible changes are discussed below.

6.4.1 CHANGES IN LAND USE THAT COMMIT FUTURE GENERATIONS

The proposed Project involves the redevelopment of a previously developed site. The Project site currently contains single family and multifamily residences. The Project would redevelop the site with four levels of multifamily residential over two levels of parking. Because the Project site is already developed and is located in an urban area with existing residential uses, the Project is not expected to result in any land use changes that would commit future generations to uses that are not already prevalent in the Project site vicinity.

6.4.2 IRREVERSIBLE DAMAGE FROM ENVIRONMENTAL ACCIDENTS

Potential environmental accidents of concern include those that would have adverse effects on the environment or public health due to the nature or quantity of material released during an accident and the receptors exposed to that release. Demolition and construction activities associated with development of the proposed Project would involve some risk for environmental accidents. However, these activities would be monitored by City, State, and federal agencies, and would follow professional industry standards for safety and construction. Additionally, the land uses proposed by the Project would not include any uses or activities that are likely to contribute to or be the cause of a significant environmental accident. As a result, the proposed Project would not pose a substantial risk of environmental accidents.
6.4.3 LARGE COMMITMENT OF NONRENEWABLE RESOURCES

Consumption of nonrenewable resources includes issues related to increased energy consumption, conversion of agricultural lands, and lost access to mining reserves. The proposed Project would require water, electric, and gas service, as well as additional resources for construction. Additionally, the ongoing operation of the proposed Project would involve the use of nonrenewable resources. Construction and ongoing maintenance of the proposed Project would irreversibly commit some materials and nonrenewable energy resources. Materials and resources used would include, but are not limited to, nonrenewable and limited resources such as oil, gasoline, sand, gravel, asphalt, and steel. These materials and energy resources would be used for infrastructure development, transportation of people and goods, as well as utilities. During the operational phase of the proposed Project (post-construction), energy sources including oil and gasoline would be used for lighting, heating, and cooling of residences, as well as transportation of people to and from the Project site.

However, the proposed Project would include several features that would offset or reduce the need for nonrenewable resources. The Project would be required to comply with all applicable building and design requirements, including those set forth in Title 24 relating to energy conservation. In compliance with CALGreen, the State’s Green Building Standards Code, the proposed Project would be required to reduce water consumption by 20 percent, divert 50 percent of construction waste from landfills, and install low pollutant-emitting materials. The landscaping plan for the proposed Project includes the use of trees compliant with CALGreen requirements for water conserving and non-invasive as defined by the California Invasive Plant Council (IPC). Additionally, the irrigation system is proposed to include the installation of a fully automated “SMART” irrigation controller with rain-sensor, the use of low precipitation/low angle irrigation spray heads, and low volume drip tubing in conjunction with mulching to reduce evapotranspiration from the root zone. The proposed Project would also apply environmentally sustainable standards for demolition, construction, and operation.

Although the construction and ongoing operation of the proposed Project would involve the use of nonrenewable resources, through the inclusion of energy-conserving Project features and compliance with applicable standards and regulations, the Project would not represent a large commitment of nonrenewable resources.

The Project site does not contain any agricultural land or a mining reserve, so it would not affect those natural resources.
7. Organizations and Persons Consulted

This Draft EIR was prepared by the following consultants and individuals:

7.1 LEAD AGENCY

CITY OF WALNUT CREEK

Steve Buckley, Planning Manager
Chip Griffin, Associate Planner
Rafat S. Raie, Traffic Engineer
John Bakker, Acting City Attorney

7.2 OTHER PUBLIC AGENCIES

CONTRA COSTA COUNTY FIRE PROTECTION DISTRICT

Ted Leach, Fire Inspector

WALNUT CREEK POLICE DEPARTMENT

Steve Gorski, Lieutenant
7.3 REPORT PREPAREDERS

LEAD EIR CONSULTANT

THE PLANNING CENTER | DC&E

Steve Noack, Principal
Terri McCracken, Senior Associate
Alexis Mena, Associate
William Hass, Hazards and Hazardous Materials Manager
Cathy Fitzgerald, Senior Engineer
Nicole Vermillion, Air Quality and Greenhouse Gas Emissions Manager
Bob Mantey, Noise, Vibration & Acoustics Manager
Stuart Michener, Senior Geologist
Steve Bush, Assistant Scientist
Rob Mazur, Assistant GIS Manager
Grant Reddy, Graphics Design Specialist
Eric Panzer, Project Planner
Ricky Caperton, Project Planner
Kelly Cha, Planner

SUBCONSULTANTS

FEHR & PEERS
Transportation and Traffic
Ellen Poling, Senior Associate Traffic Engineer

ENVIRONMENTAL COLLABORATIVE
Biological Resources
Jim Martin, Principal

TOM ORIGER & ASSOCIATES
Cultural Resources
Eileen Barrow, Cultural Resources Analyst