Condition of Approval for Buildings Having Potential of PCBs-Containing Materials
(Appplies to Commercial Demolition Permits Only)¹

PERMIT CANNOT BE ISSUED UNTIL THIS SELF-CERTIFICATION FORM HAS BEEN SIGNED AND RETURNED TO THE BUILDING DIVISION

ALL WOOD FRAME STRUCTURES & SINGLE FAMILY RESIDENTIAL STRUCTURES ARE EXEMPT

Applicants proposing to demolish buildings must complete a Construction and Debris Waste Management Plan (WMP) and conduct a PCBs Screening Assessment.

- Complete and return a signed copy of Building Permit Application – see attached form
- Complete and return a signed copy of Construction and Demolition Debris Waste Management Plan (WMP) – see attached form
- Complete and return a signed copy of PCBs Screening Assessment form

BACKGROUND

Some older buildings² have the probability of having been built with products containing Polychlorinated Biphenyls (PCBs). These substances accumulate in fish and may cause serious adverse health effects to people and wildlife that eat fish. During the demolition process these substances can mobilize and get washed into our waterways and drainage system. The City of Walnut Creek has an obligation to reduce the discharge and control all potential sources of PCBs in the environment as mandated in the city’s NPDES Permit Order No. CAS612008. On May 7, 2019 the City Council adopted Resolution No. 19-31 authorizing staff to implement a program to address the removal of PCBs-containing materials during demolition. Therefore, prior to issuance of a commercial demolition or tenant improvement permit from the Building Department, the applicant shall have applicable structure³ be evaluated to screen PCBs in priority building materials.⁴

PROCESS OVERVIEW

This document provides a model PCBs in Priority Building Materials Screening Assessment process to be conducted by demolition project proponents (applicants). A flow chart illustrating the above processes is provided in Attachment A.

Applicants proposing to demolish buildings must conduct the PCBs screening assessment. Through the PCBs screening assessment applicants will:
1) Determine whether the building proposed for demolition is likely to have PCBs-containing building materials (see discussion of applicable structure); and
2) Determine whether PCBs are present at a concentration equal to or greater than 50 parts per million (ppm) in building materials.

¹ Demolition means the wrecking, razing or tearing down of any building. The definition is intended to be consistent with the demolition activities undertaken by contractors with a C-21 Building Moving/Demolition Contractor license.
² Buildings are structures with a roof and walls standing more or less permanently in one place. Buildings are intended for human habitation or occupancy.
³ Applicable structures are defined as buildings constructed or remodeled between January 1, 1950 and December 31, 1980. Wood framed buildings and single-family residential buildings are not applicable structure regardless of the age of the building.
⁴ Priority building materials are caulk, thermal insulation, fiberglass insulation, adhesive mastics and rubber window gaskets.
Use the **PCBs Screening Assessment Form (Attachment B)** to summarize and certify the information required by the municipality to issue the demolition permit. The form is divided into four parts:

- **Part 1** provide applicant information and project location.
- **Part 2** complete the questions to identify whether the project involves an *applicable structure*. If the demolition does not involve an applicable structure, the form may be certified and submitted without completing Part 3.
- **Part 3** complete the questions to provide the concentrations of PCBs in any *priority building materials*.
- **Part 4** certify the information being submitted.

Note that fluorescent light ballasts, polyurethane foam furniture, and Askarel fluid used in transformers, all of which may contain PCBs, are typically managed during pre-demolition activities under current regulations and programs that require removal of universal waste and outdated transformers. For this process it is assumed that those materials will be evaluated and managed under those existing programs.

APPLICANT INSTRUCTIONS FOR COMPLETING THE PCBS SCREENING ASSESSMENT FORM

Applicants for demolition permits or other permits that involve the complete demolition of a building must conduct an assessment to screen for PCBs in *priority building materials*. Use the **PCBs Screening Assessment Form**, to summarize and certify the information needed by the municipality to issue a demolition permit. The form is provided in **Attachment B**. If the project includes the demolition of multiple buildings complete one form for each building to be demolished.

Part 1. Owner and project information

Complete the owner and consultant information and the project location information.

For the Type of Construction select one of the following options:

- **Wood Frame** (Buildings constructed with lumber or timbers, which make up the studs, plates, joists, and rafters.)
- **Masonry Construction** (Buildings constructed with concrete blocks or bricks as the load bearing walls typically with the floors and ceilings constructed with wooden joists.)
- **Steel Frame Construction** (Buildings constructed with steel studs or steel columns and steel joists or trusses to support floors and roofs. Includes light gauge steel construction and high-rise steel construction.)

This screening process is part of a program for water quality protection and was designed in accordance with requirements in the MRP. It does not address other environmental programs or regulations (e.g., PCBs regulations under the Toxic Substances Control Act (TSCA); federal, state, or local regulations for hazardous material handling and hazardous waste disposal; health and safety practices to mitigate human exposure to PCBs or other hazardous materials; recycling mandates; or abatement at sites with PCBs (or other contaminants). **The applicant is responsible for complying with all relevant laws and regulations. See the Notices to Applicants section for additional information.**

5 A National Pollutant Discharge Elimination System (NPDES) permit, Order No. R2-2015-0049, issued to municipalities in the counties of Alameda, Contra Costa, San Mateo, and Santa Clara, and the Cities of Fairfield, Suisun City, and Vallejo.
Part 2. Is building subject to the screening requirement based on type, use, and age of the building?

Part 2 documents the determination of whether the proposed demolition will affect an *applicable structure*. If the demolition does not affect an *applicable structure*, then the assessment is complete, and the form can be certified. This determination screens out buildings that are a lower priority with regard PCBs-containing materials and provides an off-ramp from the rest of the screening process.

Question 2.a: Is the building to be demolished wood framed and/or single family residential?
- If YES the PCBs Screening Assessment is complete, skip to the certification in Part 4.
- If NO, continue to Question 2.b.

Question 2.b: Was the building to be demolished constructed or remodeled between January 1, 1950 and December 31, 1980?
- If YES continue to Question 2.c.
- If NO, the PCBs Screening Assessment is complete, skip to the certification in Part 4.

Question 2.c: Is the proposed demolition a complete demolition of the building (as defined in key definitions of this document)?
- If YES continue to Part 3.
- If NO, the PCBs Screening Assessment is complete, skip to the certification in Part 4.

Part 3. Report concentrations of PCBs in priority building materials

Part 3 documents the results of the assessment of PCBs concentrations in *priority building materials*, as determined in Part 2. Check the option used.

- **Option 1** Conduct representative sampling and analysis of the *priority building materials* per the Protocol for Evaluating Priority PCBs-Containing Materials before Building Demolition (August 2018) provided in Attachment C.

- **Option 2** Use existing sampling results of the *priority building materials*. Applicants who have conducted sampling prior to the publication of the protocol may use that data provided it is consistent with the protocol (e.g., analytical methods, sample collection frequency, QA/QC). It is anticipated that prior sampling results will rarely be available and that most Applicants will need to use Option 1.

3.a Option 1 – Conduct representative sampling

Check this box if you conducted representative sampling and analysis of the *priority building materials* per the Protocol for Evaluating Priority PCBs-Containing Materials before Building Demolition (August 2018) (Attachment C).
Complete the applicable tables for each priority building material.

Attach the contractor’s report documenting the evaluation results.

Attach (or include in the contractor’s report) the QA/QC checklist (see Attachment C, Section 3.2.4).

Attach copies of the analytical data reports.

3.a Option 2 – Use existing sampling records

In some cases, a property owner may have conducted sampling of the priority building materials for PCBS. If such data exist, you may use these data to demonstrate the concentration of PCBs in the priority building materials for the PCBs screening. However, if the sampling must be consistent with the Protocol for Evaluating Priority PCBs-Containing Materials before Building Demolition.

- Complete the applicable tables for each priority building material.
- Attach the contractor’s report/statement that the results are consistent with the Protocol for Evaluating Priority PCBs-Containing Materials before Building Demolition.
- Attach copies of the analytical data reports.

Part 3 Tables Summarize concentrations of PCBs in priority building materials

Use these tables to summarize the concentrations of PCBs in the priority building materials.

- Each page of the table is for a different material. Duplicate the pages as needed to report all concentration data.
- A blank page is provided. Applicants have the option of submitting PCBs concentration data on other materials in addition to the priority building materials.

Column 1: required for all priority building material PCBs concentrations

- Use column 1 to report all PCBs concentrations in the priority building materials. Provide short description of the sample location, concentration.

Column 2: only required for PCBs concentrations ≥50 ppm

- Use column 2 to estimate the amount of material associated with each sample.

Part 4. Certification

- Complete the certification. The certification must be signed by the property owner or the owner’s agent or legal representatives and the consultant who complete the application form.

6 The contractor’s report of the findings of the PCBs building material evaluation. See section 3 of Protocol for Evaluating Priority PCBs-Containing Materials before Building Demolition (Attachment C).
Notices to Applicants Regarding Federal and State PCBs Regulations

Applicants that determine PCBs exist in priority building materials must follow applicable federal and state laws. This may include reporting to U.S. Environmental Protection Agency (USEPA), the San Francisco Bay Regional Water Quality Control Board, and the California Department of Toxic Substances Control (DTSC). These agencies may require additional sampling and abatement of PCBs.

Depending on the approach for sampling and removing building materials containing PCBs, you may need to notify or seek advance approval from USEPA before building demolition. Even in circumstances where advance notification to or approval from USEPA is not required before the demolition activity, the disposal of PCBs waste is regulated under Toxic Substances Control Act (TSCA).

Additionally, the disposal of PCBs waste is subject to California Code of Regulations (CCR) California Code of Regulations (CCR) Title 22, Section Division 4.5, Chapter 12, Standards Applicable to Hazardous Waste Generators.

Building owners and employers need to consider worker and public safety during work involving hazardous materials and wastes including PCBs.

Federal and State Regulations

Building materials containing PCBs at or above 50 ppm that were manufactured with PCBs (e.g., caulk, joint sealants, and paint) fall under the category of PCBs bulk product wastes. See 40 Code of Federal Regulations (CFR) 761.3 for a definition of PCBs bulk product wastes.

Building materials such as concrete, brick, metal contaminated with PCBs are PCBs remediation wastes (e.g., concrete contaminated with PCBs from caulk that contains PCBs). 40 CFR 761.3 defines PCBs remediation wastes.

Disposal of PCBs wastes are subject to TSCA requirements such as manifesting of the waste for transportation and disposal. See 40 CFR 761 and 40 CFR 761, Subpart K.

TSCA-regulated does not equate solely to materials containing PCBs at or above 50 ppm. There are circumstances in which materials containing PCBs below 50 ppm are subject to regulation under TSCA. See 40 CFR 761.61(a)(5)(i)(B)(2)(ii).

Disposal of PCBs wastes are subject to California Code of Regulations (CCR) Title 22, Section Division 4.5, Chapter 12, Standards Applicable to Hazardous Waste Generators.

California hazardous waste regulatory levels for PCBs are 5 ppm based on the Soluble Threshold Limit Concentration test and 50 ppm based on the Total Threshold Limit Concentration test, see CCR, Title 22, Section 66261.24, Table III.
Agency Contacts

Applicants should contact the appropriate agencies and review the relevant guidance and information about PCBs in building materials. Municipal staff are not able to advise you on the requirements of the applicable federal and state laws.

<table>
<thead>
<tr>
<th>Agency</th>
<th>Contact</th>
<th>Useful Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>US Environmental Protection Agency</td>
<td>Steve Armann (415) 972-3352 armann.steve@epa.gov</td>
<td>EPA PCB website</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PCBs in Building Materials Fact Sheet and Q/A Document</td>
</tr>
<tr>
<td></td>
<td></td>
<td>USEPA PCB Facility Approval Streamlining Toolbox (PCB FAST)</td>
</tr>
<tr>
<td>San Francisco Bay Regional Water Quality Control Board</td>
<td>Jan O’Hara (510) 622-5681 laneqOHara@waterboards.ca.gov Cheryl Prowell (510) 622-2408 Cheryl.Prowell@waterboards.ca.gov</td>
<td>TMDLs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Site Cleanup Program</td>
</tr>
<tr>
<td>Department of Toxic Substances Control</td>
<td>Regulatory Assistance Office 1-800-72TOXIC RAO@dtsc.ca.gov</td>
<td>Site Cleanup/Brownfields</td>
</tr>
<tr>
<td>California Division of Occupational Safety and Health (known as Cal/OSHA)</td>
<td>CalOSHA Consultations Services 1-800-963-9424</td>
<td>Consultation</td>
</tr>
</tbody>
</table>
PCBs in Priority Building Materials Screening Assessment Process

Is the building to be demolished wood framed or a single-family residential building?

NO

Was the building to be demolished constructed or remodeled between January 1, 1950 and December 30, 1980?

NO

Is the proposed demolition a complete demolition of the building?

NO

NO

Applicant may also use available records specific to the priority building materials found in the building to determine PCBs concentrations.

YES

Positive Screening

Applicant submits screening form to City Building Division. City issues demolition permit in accordance with municipal procedures.

Applicant follows applicable federal and state requirements for notification and abatement. (See note 1 on reverse side.)

NO

Do representative sample results or records show PCBs concentrations > 50 ppm in one or more priority materials?

NO

PCBs Screening Assessment is complete or did not identify PCBs concentrations > 50 ppm in any priority materials. (see note 1 on reverse side.) Applicant submits screening form to City Building Division prior to permit issuance.
NOTE 1

- Building materials containing PCBs at or above 50 ppm that were manufactured with PCBs (e.g., caulk, joint sealants, paint) fall under the category of PCBs bulk product wastes. See 40 Code of Federal Regulations (CFR) 761.3 for a definition of PCBs bulk product wastes.

- Building materials such as concrete, brick or metal contaminated with PCBs are PCBs remediation wastes (e.g., concrete contaminated with PCBs from caulk that contains PCBs). 40 CFR 761.3 defines PCBs remediation wastes.

- Disposal of PCBs wastes are subject to the Toxic Substances Control Act (TSCA) requirements such as manifesting of the waste for transportation and disposal. See 40 CFR 761 and 40 CFR 761, Subpart K.

- TSCA-regulated does not equate solely to “materials containing PCBs at or above “50 mg/kg.” There are circumstances in which materials containing PCBs below 50 mg/kg are subject to regulation under TSCA. See 40 CFR 761.61(a)(5)(i)(B)(2)(ii).

- Disposal of PCBs wastes are subject to California Code of Regulations (CCR) Title 22, Section Division 4.5, Chapter 12, Standards Applicable to Hazardous Waste Generators.

- California hazardous waste regulatory levels for PCBs are 5 ppm based on the Soluble Threshold Limit Concentration test and 50 ppm based on the Total Threshold Limit Concentration test, see CCR, Title 22, Section 66261.24, Table III.

- Note that fluorescent light ballasts, polyurethane foam furniture, and Askarel fluid used in transformers, all of which may contain PCBs, are typically managed during pre-demolition activities under current regulations and programs that require removal of universal waste and outdated transformers. For this process it is assumed that those materials will be evaluated and managed under those existing programs.
ATTACHMENT C

Protocol for Evaluating Priority PCBs- Containing
Materials before Building Demolition
This screening process is part of a program for water quality protection and was designed in accordance with requirements in the Bay Area regional municipal stormwater NPDES permit (referred to as the Municipal Regional Permit). This process does not address other environmental programs or regulations (e.g., PCBs regulations under the Toxic Substances Control Act (TSCA); federal, state, or local regulations for hazardous material handling and hazardous waste disposal; health and safety practices to mitigate human exposure to PCBs or other hazardous materials; recycling mandates; or abatement at sites with PCBs or other contaminants). The applicant is responsible for knowing and complying with all relevant laws and regulations. See Notices to Applicants section in the Applicant Instructions and at the end of this form.

Completable applicable parts of the PCBs Screening Assessment Form and submit with your demolition permit application.

All Applicants must complete Part 1 and Part 2.

<table>
<thead>
<tr>
<th>PCAs Screening Assessment Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part 1. Owner/Consultant and project information</td>
</tr>
<tr>
<td>Owner Information</td>
</tr>
<tr>
<td>Name</td>
</tr>
<tr>
<td>Address</td>
</tr>
<tr>
<td>City</td>
</tr>
<tr>
<td>Contact (Agent)</td>
</tr>
<tr>
<td>Phone</td>
</tr>
<tr>
<td>Consultant Information</td>
</tr>
<tr>
<td>Firm Name</td>
</tr>
<tr>
<td>Address</td>
</tr>
<tr>
<td>City</td>
</tr>
<tr>
<td>Contact Person</td>
</tr>
<tr>
<td>Phone</td>
</tr>
<tr>
<td>Project Location</td>
</tr>
<tr>
<td>Address</td>
</tr>
<tr>
<td>City</td>
</tr>
<tr>
<td>APN (s)</td>
</tr>
<tr>
<td>Year Building was Built</td>
</tr>
<tr>
<td>Estimated Demolition Date</td>
</tr>
</tbody>
</table>
Part 2. Is building subject to the PCBs screening requirement based on type, use, and age of the building?

2.a Is the building to be demolished wood framed and/or single family residential? □ Yes □ No

If the answer to question 2.a is Yes, the PCBs Screening Assessment is complete, skip to Part 4. If the answer is No, continue to Question 2.b.

2.b Was the building to be demolished constructed or remodeled between January 1, 1950 and December 31, 1980? □ Yes □ No

➢ If the answer to Question 2.b is No the PCBs Screening Assessment is complete, skip to Part 4. If the answer is Yes, continue to Question 2.c.

2.c Is the proposed demolition a complete demolition of the building? □ Yes □ No

➢ If the answer to Question 2.c is No the PCBs Screening Assessment is complete, skip to Part 4. If the answer is Yes, complete Part 3.

All applications affecting applicable structures and demolitions must complete Part 3 and the Part 3 Tables.

Part 3. Report concentrations of PCBs in priority building materials

3.a Select option and report PCBs concentrations in the priority building materials and the source of data for each of the priority building materials. Provide the required supporting information

☐ Option 1 Conduct Representative Sampling
 • Summarize results on Part 3 Tables; and
 • Provide the following supporting information:
 □ Contractor’s report documenting the assessment results;
 □ QA/QC checklist (see Attachment C, section 3.2.4); and
 □ Copies of the analytical data reports.

☐ Option 2 Use Existing Sampling Records
 • Summarize results on Part 3 Tables; and
 • Provide the following supporting information:
 □ Contractor’s report/statement that the results are consistent with the Protocol for Evaluating Priority PCBs-Containing Materials before Building Demolition.
 □ Copies of the analytical data reports.

All Applicants must complete Part 4.

Part 4. Certification

I certify that the information provided in this form is, to the best of my knowledge and belief, true, accurate, and complete. I further certify that I understand my responsibility for knowing and complying with all relevant laws and regulations related to reporting, abating, and handing and disposing of PCBs materials and wastes. I understand there are significant penalties for submitting false information. I will retain a copy of this form and the supporting documentation for at least 5 years.

Signature: ___________________________ Date: ______________

(Property Owner/Agent/Legal Representative)

Print/Type: ___________________________

(Property Owner/Agent/Legal Representative Name)

Signature: ___________________________ Date: ______________

(Consultant Completing Application Form)

Print/Type: ___________________________

(Consultant Completing Application Form)
Applicants that determine PCBs exist in building materials must follow applicable federal and state laws. This may include reporting to U.S. Environmental Protection Agency (USEPA), the San Francisco Bay Regional Water Quality Control Board, and the California Department of Toxic Substances Control (DTSC). These agencies may require additional sampling and abatement of PCBs. Depending on the approach for sampling and removing building materials containing PCBs, you may need to notify or seek advance approval from USEPA before building demolition. Even in circumstances where advance notification to or approval from USEPA is not required before the demolition activity, the disposal of PCBs waste is regulated under TSCA and the California Code of Regulations. (See Note 1)

Note 1 - Federal and State Regulations

Building materials containing PCBs at or above 50 ppm that were manufactured with PCBs (e.g., caulk, joint sealants, paint) fall under the category of PCBs bulk product wastes. See 40 Code of Federal Regulations (CFR) 761.3 for a definition of PCBs bulk product wastes.

Building materials such as concrete, brick, metal contaminated with PCBs are PCBs remediation wastes (e.g., concrete contaminated with PCBs from caulk that contains PCBs). 40 CFR 761.3 defines PCBs remediation wastes.

Disposal of PCBs wastes are subject to TSCA requirements such as manifesting of the waste for transportation and disposal. See 40 CFR 761 and 40 CFR 761, Subpart K.

TSCA-regulated does not equate solely to materials containing PCBs at or above 50 ppm. There are circumstances in which materials containing PCBs below 50 ppm are subject to regulation under TSCA. See 40 CFR 761.61(a)(5)(i)(B)(2)(ii).

Disposal of PCBs wastes are subject to California Code of Regulations (CCR) Title 22, Section Division 4.5, Chapter 12, Standards Applicable to Hazardous Waste Generators.

California hazardous waste regulatory levels for PCBs are 5 ppm based on the Soluble Threshold Limit Concentration test and 50 ppm based on the Total Threshold Limit Concentration test, see CCR, Title 22, Section 66261.24, Table III.

<table>
<thead>
<tr>
<th>Agency</th>
<th>Contact</th>
<th>Useful Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>US Environmental Protection Agency</td>
<td>Steve Armann (415) 972-3352</td>
<td>https://www.epa.gov/pcbs (EPA PCBs website)</td>
</tr>
<tr>
<td></td>
<td>armann.steve@epa.gov</td>
<td>https://www.epa.gov/pcbs/questions-and-answers-polychlorinated-biphenyls-pcb-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>building-materials (PCBs in Building Materials Fact Sheet and Q/A Document)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>https://www.epa.gov/pcbs-facility-approval-streamlining-toolbox-fast-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>streamlined-cleanup-approval-process (USEPA PCB Facility Approval Streamlining Toolbox (PCB FAST))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>https://www.epa.gov/pcbs/polychlorinated-biphenyls-pcb-building-materials#</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Test-Methods (See Information for Contractors Working in Older Buildings that May Contain PCBs)</td>
</tr>
<tr>
<td>San Francisco Bay Regional Water Quality</td>
<td>Jan O'Hara (510) 622-5681</td>
<td>https://www.waterboards.ca.gov/sanfranciscobay/water_issues/programs/TM</td>
</tr>
<tr>
<td>Control Board</td>
<td>Janet.O'Hara@waterboards.ca.gov</td>
<td>DL/sfbaypcbstdml.shtml</td>
</tr>
<tr>
<td></td>
<td>Cheryl Prowell (510) 622-2408</td>
<td>https://www.waterboards.ca.gov/sanfranciscobay/water_issues/programs/site</td>
</tr>
<tr>
<td></td>
<td>Cheryl.Prowell@waterboards.ca.gov</td>
<td>cleanupprogram.html</td>
</tr>
<tr>
<td>Department of Toxic Substances Control</td>
<td>Regulatory Assistance Office</td>
<td>http://www.dtsc.ca.gov/SiteCleanup/Brownfields/upload/PUB_SMP_Guide-to-</td>
</tr>
<tr>
<td></td>
<td>1-800-72TOXIC RAO@dtsc.ca.gov</td>
<td>Selecting-a-Consultant.pdf</td>
</tr>
<tr>
<td>California Division of Occupational Safety</td>
<td>CalOSHA Consultations Services</td>
<td>https://www.dir.ca.gov/dosh/consultation.html</td>
</tr>
<tr>
<td>and Health (Cal/OSHA)</td>
<td>1-800-963-9424</td>
<td></td>
</tr>
</tbody>
</table>
Part 3 Caulk Applications Table

Column 1. Report all PCBs concentrations for each homogenous area of caulking area (see Attachment C, Section 3.2.2). Use sample designators/descriptions from laboratory report.

<table>
<thead>
<tr>
<th>Caulk Application Sample Description</th>
<th>Concentration (mg/kg)</th>
<th>Estimate Amount of Material</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caulk Sample 1</td>
<td>320</td>
<td>48</td>
<td>Linear Feet</td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Column 2. Complete for each concentration ≥ 50 ppm

Duplicate page if additional space is needed.
Part 3 Fiberglass Insulation Applications Table

Column 1. Report all PCBs concentrations for each homogenous area of fiberglass insulation (see Attachment C, Section 3.2.2). Use sample designators/descriptions from laboratory report.

<table>
<thead>
<tr>
<th>Fiberglass Insulation Application Sample Description</th>
<th>Concentration (mg/kg)</th>
<th>Estimate Amount of Material</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiberglass Insulation Sample 1</td>
<td>78</td>
<td>86</td>
<td>Square Feet</td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td>Square Feet</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td>Square Feet</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td>Square Feet</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td>Square Feet</td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td>Square Feet</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td></td>
<td>Square Feet</td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td></td>
<td>Square Feet</td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td></td>
<td>Square Feet</td>
</tr>
<tr>
<td>9.</td>
<td></td>
<td></td>
<td>Square Feet</td>
</tr>
<tr>
<td>10.</td>
<td></td>
<td></td>
<td>Square Feet</td>
</tr>
</tbody>
</table>

To estimate the square footage of insulation wrapped around pipes use the formula to calculate the lateral area of a cylinder $2\pi rh$. Where r is the pipe radius and h is the pipe length.

Duplicate page if additional space is needed.
Part 3 Thermal Insulation Applications Table

Column 1. Report all PCBs concentrations for each homogenous area of thermal insulation (see Attachment C, Section 3.2.2). Use sample designators/descriptions from laboratory report.

<table>
<thead>
<tr>
<th>Thermal Insulation Application Sample Description</th>
<th>Concentration (mg/kg)</th>
<th>Estimate Amount of Material</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Insulation Sample 1</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td></td>
<td>Linear Feet</td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To estimate the square footage of insulation wrapped around pipes use the formula to calculate the lateral area of a cylinder 2\(\pi rh\). Where \(r\) is the pipe radius and \(h\) is the pipe length.

Duplicate page if additional space is needed.
Part 3 Adhesive Mastic Applications Table

Column 1. Report PCBs concentrations for each homogenous area of mastic (see Attachment C, Section 3.2.2. Use sample designators/descriptions from laboratory report.)

Column 2. Complete for each concentration ≥ 50 mg/kg

<table>
<thead>
<tr>
<th>Adhesive Mastic Application Sample Description</th>
<th>Concentration (mg/kg)</th>
<th>Estimate Amount of Material</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adhesive Mastic Sample 1</td>
<td>87.4</td>
<td>800</td>
<td>Square Feet</td>
</tr>
<tr>
<td>1.__</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.__</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.__</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.__</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.__</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.__</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.__</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.__</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.__</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.__</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Duplicate page if additional space is needed.
<table>
<thead>
<tr>
<th>Rubber Window Gasket Application Sample Description</th>
<th>Concentration (mg/kg)</th>
<th>Estimate Amount of Material</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Window Gasket Sample 1</td>
<td>70</td>
<td>75</td>
<td>Linear Feet</td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Duplicate page if additional space is needed.
Part 3 Other Materials Table

Column 1. Optional: Use this form to report PCBs concentration data from materials other than priority building materials. Report PCBs concentrations for each material and homogeneous area. Use sample designators/descriptions from laboratory report.

<table>
<thead>
<tr>
<th>Material Sample Description</th>
<th>Concentration (mg/kg)</th>
<th>Estimate Amount of Material</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wall paint Sample 1</td>
<td>228</td>
<td>1500</td>
<td>Square Feet</td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Column 2. Complete for each concentration ≥ 50 mg/kg

Duplicate page if additional space is needed.
Attachment C
Protocol for Evaluating Priority PCBs-Containing Materials before Building Demolition
TABLE OF CONTENTS

1. **INTRODUCTION** ... 1

2. **CURRENTLY ESTABLISHED BUILDING MATERIAL EVALUATION PROTOCOLS** ... 2
 2.1 **Asbestos Containing Material Evaluation Procedures** .. 2
 2.1.1 Asbestos-Containing Materials in Schools Rule .. 2
 2.2 **Lead-Based Paint (LBP) Evaluation Procedures** ... 6
 2.2.1 LBP Sampling Procedures: Test Kits .. 6
 2.2.2 LBP Sampling Procedures: XRF Devices ... 7
 2.2.3 LBP Sampling Procedures: Laboratory Testing of Paint Chips 9

3. **PCBS BUILDING MATERIAL EVALUATION PROTOCOL** .. 12
 3.1 **Priority Building Materials to be Tested** ... 12
 3.2 **PCBs Sampling Procedures** ... 14
 3.2.1 Sampling Equipment ... 15
 3.2.2 Sample Collection Frequency .. 15
 3.2.3 Sample Analysis and Preservation .. 17
 3.2.4 Quality Assurance and Quality Control .. 18
 3.3 **Reporting and Notifications** ... 19

4. **REFERENCES** ... 20

LIST OF APPENDICES

Appendix A: PCBs Building Material Prioritization Worksheet
Appendix B: Priority Building Materials Photographic Log
1. INTRODUCTION

The San Francisco Bay Region Municipal Regional Stormwater NPDES permit, referred to as the Municipal Regional Permit (MRP)\(^1\), includes provisions that implement stormwater-related aspects of the Total Maximum Daily Load (TMDL) for polychlorinated biphenyls (PCBs) in the Bay. Provision C.12.f. requires that Permittees develop and implement or cause to be developed and implemented an effective protocol for managing materials with PCBs concentrations of 50 milligrams per kilogram (mg/kg) (equivalent to parts-per-million, or ppm), the target management level, or greater in applicable structures at the time such structures undergo demolition\(^2\), so that PCBs do not enter municipal storm drain systems. Applicable structures include, at a minimum, non-residential structures constructed or remodeled between the years 1950 and 1980 with building materials such as caulking and thermal insulation with PCBs concentrations of 50 ppm or greater. Single-family residential and wood frame structures are exempt.

On behalf of MRP Permittees, the Bay Area Stormwater Management Agencies Association (BASMAA) developed these guidance materials, tools, and protocols to help local programs develop consistent standardized Bay Area-Wide processes to address the management of PCBs Materials during Building Demolition.

If materials are found or known to contain PCBs, those materials must be managed appropriately and according to all applicable local, state, and federal requirements. Management of PCBs-containing materials is beyond the scope of this document.

To establish the PCBs protocol, current established protocols were evaluated that are widely accepted in the building demolition industry for other Federal- and State-regulated constituents of concern. This document provides applicable examples of sampling and evaluation procedures for building materials potentially contaminated with asbestos-containing material (ACM)\(^3\) and lead-based paint (LBP)\(^4\), which are summarized and referenced to provide the foundation for the PCBs protocol. These components include guidance on sampling frequencies, laboratory sample analysis, quality assurance and quality control procedures, and reporting.

\(^1\) The Municipal Regional Stormwater Permit, Order No. R2-2015-0049, was adopted November 19, 2015.

\(^2\) Demolition means the wrecking or taking out of any load-supporting structural member of a facility together with any related handling operations (40 CFR., Part 61, Subpart M).

\(^3\) Asbestos-containing material (ACM) means any material or product which contains more than one percent asbestos.

\(^4\) Lead-based paint (LBP) is any paint, varnish, shellac, or other coating that contains lead equal to or greater than 1.0 mg/cm\(^2\) as measured by XRF device or laboratory analysis, or 0.5 percent by weight (5,000 ppm or 5,000 mg/kg) as measured by laboratory analysis.
2. CURRENTLY ESTABLISHED BUILDING MATERIAL EVALUATION PROTOCOLS

This section presents evaluation protocols for ACM and LBP, which provide a foundation for the PCBs protocol summarized in Section 3. This section includes guidance on sampling frequencies, laboratory sample analysis, quality assurance and quality control procedures derived from regulatory procedures for ACM and LBP.

2.1 Asbestos Containing Material Evaluation Procedures

Asbestos bulk sampling procedures are specified in several Federal regulations, implemented primarily by the United States Environmental Protection Agency (EPA) as well as the Occupational Safety and Health Administration (OSHA). The Consumer Product Safety Commission (CPSC) and the Mine Safety and Health Administration (MSHA) specify additional regulations and procedures, but these are generally less applicable to evaluation procedures.

The foundational regulations pertaining to asbestos sampling in buildings are the Asbestos Hazard Emergency Response Act (AHERA; Toxic Substances Control Act [TSCA] Title II) (15 U.S.C. § 2641-2656) as well as the Asbestos School Hazard Abatement Reauthorization Act (ASHARA). EPA promulgated regulations under AHERA to require inspection of schools for asbestos-containing building materials, and to perform resultant corrective actions. Furthermore, AHERA tasked the EPA with developing a plan for accreditation of asbestos inspectors. ASHARA extended funding for asbestos programs at schools and expanded accreditation requirements to cover asbestos abatement at commercial buildings other than schools.

Pursuant to AHERA, the Asbestos-Containing Materials in Schools rule (40 CFR Part 763, Subpart E) details specific requirements for building material inspections at schools, preparation of asbestos management plans, and implementation of response actions. EPA regulation on asbestos related to structure demolition is specified in subpart M of the National Emission Standards for Hazardous Air Pollutants (NESHAP) regulations (40 CFR Part 61, Subpart M).

The following sections summarize the evaluation procedures specified in the Asbestos-Containing Materials in Schools rule as well as the Asbestos NESHAP regulations. Both OSHA and EPA worker protection requirements are also discussed.

2.1.1 Asbestos-Containing Materials in Schools Rule

The following sections summarize the inspection, re-inspection, sampling, analysis, and evaluation procedures specified in the Asbestos-Containing Materials in Schools rule (40 CFR Part 763, Subpart E).
Evaluation

For each inspection and re-inspection of asbestos-containing building material (ACBM)\(^6\), the local education agency shall have an accredited inspector provide a written evaluation of all friable known or assumed ACBM. The evaluation shall consider the following:

- Location and amount of material, both in total quantity and as a percentage of the functional space;
- Condition of the material, specifying:
 - Type of damage or significant damage (e.g., flaking, blistering, water damage, or other signs of physical damage);
 - Severity of damage (e.g., major flaking, severely torn protective jackets, as opposed to occasional flaking, minor tears to jackets);
 - Extent or spread of damage over large areas or large percentages of the homogeneous\(^7\) area;
- Whether the material is accessible;
- The material’s potential for disturbance;
- Known or suspected causes of damage or significant damage (e.g., air erosion, vandalism, vibration, water); and
- Preventive measures that could potentially eliminate the reasonable likelihood of undamaged ACBM from becoming significantly damaged.

The inspector shall classify and give reasons in the written evaluation for classifying the ACBM and suspected ACBM assumed to be ACM into one of the following categories:

1. Damaged or significantly damaged thermal system insulation ACM;
2. Damaged friable surfacing ACM;
3. Significantly damaged friable surfacing ACM;
4. Damaged or significantly damaged friable miscellaneous ACM;
5. ACBM with potential for damage;
6. ACBM with potential for significant damage; and
7. Any remaining friable ACBM or friable suspected ACBM.

\(^5\) Asbestos-containing building material (ACBM) means surfacing ACM, thermal system insulation ACM, or miscellaneous ACM that is found in or on interior structural members or other parts of a building.

\(^6\) Homogenous refers to a substance or area that is uniform in texture, color, and general physical appearance and properties
Inspection and Re-inspection

Inspect any building that is to be used as a school, prior to such use, by an accredited inspector. In emergency situations, inspect the building within 30 days of commencement of such use.

For each area of the building, complete the following inspection procedure:

- Visually inspect the area to identify suspected ACBM;
- Touch suspected ACBM to determine friability (Friable material is material that may be crumbled or pulverized by hand pressure alone. Note that thermal system insulation that has retained its structural integrity and that has an undamaged protective jacket or wrap that prevents fiber release shall be treated as non-friable.);
- Categorize all areas into homogenous areas of friable suspected ACBM and non-friable suspected ACBM;
- Assume that some or all the homogeneous areas are ACBM, and for each homogeneous area that is not assumed to be ACBM, collect and submit samples for bulk analysis. Do not sample areas that an accredited inspector assumes to contain ACBM. For uncertain areas, collect and bulk samples and submit for analysis (see Sampling below);
- Assess friable material in areas where samples are collected, in areas where samples are not collected but ACBM is assumed to be present, and in areas identified in previous inspections;
- Record the following information and submit a copy for inclusion in an asbestos management plan, within 30 days of the inspection:
 - An inspection report including the signature, state of accreditation, and accreditation number of each inspector, as well as the date of the inspection;
 - A comprehensive inspection inventory, including the date and locations of samples, locations of areas assumed to contain friable ACBM, and locations of areas assumed to contain non-friable ACBM;
 - A description of the manner used to determine sampling locations;
 - A list of all categorized and identified homogenous areas into surfacing material, thermal system insulation, or miscellaneous material; and
 - Evaluations made of friable material.
Repeat this process as a re-inspection at least once every 3 years after a management plan is in effect. Reassess the condition of friable known or assumed ACBM previously identified. Identify any homogenous areas with material that has become friable since the last inspection or re-inspection and collect and submit samples of the material.

Sampling

Collect samples in a statistically random manner that is representative of each homogenous area.

- For surfacing material, the number of samples to be collected is as follows:
 - Collect at least three samples from each homogenous area less than 1,000 square feet;
 - Collect at least five samples from each homogenous area between 1,000 and 5,000 square feet; and
 - Collect at least seven samples from each homogenous area greater than 5,000 square feet.
- For thermal system insulation:
 - Collect at least one bulk sample from each homogeneous area that is not assumed to be ACM;
 - Collect at least one bulk sample from each homogeneous area of patched insulation that is not assumed to be ACM, if the patched section is less than six linear or square feet;
 - Where cement or plaster is used on fittings such as tees, elbows or valves, collect samples to determine if material is ACM or not;
 - If the accredited inspector determines that the thermal system insulation is fiberglass, foam glass, rubber, or other non-ACBM, samples are not required to be collected;
- For miscellaneous material, collect bulk samples from each homogeneous area of friable material that is not assumed to be ACM.

Analysis

Samples should be analyzed by laboratories accredited by the National Bureau of Standards (NBS). The laboratories must have received interim accreditation for polarized light microscopy (PLM) analysis under the EPA Interim Asbestos Bulk Sample Analysis Quality Assurance Program until the NBS PLM laboratory accreditation program for PLM is operational.

Samples should be analyzed for asbestos content by PLM using the “Interim Method for the Bulk Determination of Asbestos in Bulk Insulation Samples”, found at Appendix E to Subpart E of 40 CFR Part 763. Samples should not be composited.
A homogenous area is considered not to contain ACM only if the results of all samples from that area show asbestos in concentrations of 1 percent or less. An area is considered to contain ACM if at least one sample from the area shows asbestos in concentrations greater than 1 percent.

Submit the name and address of each laboratory performing the analysis, the date of the analysis, and the person performing the analysis for inclusion into the management plan within 30 days of the analysis.

2.2 **Lead-Based Paint (LBP) Evaluation Procedures**

Lead-Based Paint (LBP) evaluation procedures are codified in various federal and state regulations.

Title IV of the Toxic Substances Control Act (TSCA) as well as other authorities in the Residential Lead-Based Paint Hazard Reduction Act of 1992 directs the EPA to regulate lead-based paint hazards. The primary Federal regulations and guidelines related to LBP evaluation procedures include:

- The Lead Renovation, Repair and Painting Program (RRP) Rule (40 CFR 745, Subpart E);
- The National Lead Laboratory Accreditation Program (TSCA Section 405(b)); and

Furthermore, the California Department of Public Health (CDPH) Title 17, California Code of Regulations, Division 1, Chapter 8 “Accreditation, Certification, and Work Practices for Lead- Based Paint and Lead Hazards,” specifies some LBP evaluation procedures as part of the accreditation program.

The HUD Guidelines provide the most comprehensive procedures for LBP evaluations and are referenced by many other regulations.

There are three primary methods of performing LBP evaluation: test kits, X-ray Fluorescence (XRF) devices, and laboratory testing of paint chips. Sampling procedures for each method are detailed in the following sections.

Under CDPH Title 17, certified Lead Inspector/Assessors are required to use XRF devices or laboratory analysis, and not test kits.

2.2.1 LBP Sampling Procedures: Test Kits

In 2008, the EPA published the RRP rule, which, among other things, established criteria for lead test kits for use in LBP evaluation. Lead test kits recognized by EPA before
September 1, 2010, must meet only the negative response criterion outlined in 40 CFR 745.88(c)(1):

For paint containing lead at or above the regulated level, 1.0 mg/cm² or 0.5% by weight, a demonstrated probability (with 95% confidence) of a negative response less than or equal to 5% of the time must be met.

Lead test kits recognized after September 1, 2010, must meet both the negative response and positive response criteria outlined in 40 CFR 745.88(c)(1) and (2). The positive-response criterion states:

For paint containing lead below the regulated level, 1.0 mg/cm² or 0.5% by weight, a demonstrated probability (with 95% confidence) of a positive response less than or equal to 10% of the time must be met.

To date, no lead test kit has met both criteria. However, three lead test kits recognized before September 1, 2010, exist and are recognized by EPA:

- 3M™ LeadCheck™, manufactured by the 3M Company, for use on wood, ferrous metal, drywall, and plaster surfaces;
- D-Lead®, manufactured by ESCA Tech, Inc., for use on wood, ferrous metal, drywall, and plaster surfaces; and
- The Commonwealth of Massachusetts lead test kit, for use only on drywall and plaster surfaces.

Test kits cannot determine the concentration of lead, only presence or absence at best. For this reason, test kits are best used by homeowners or other non-professionals as a preliminary evaluation before using an XRF device or laboratory analysis of paint chips.

There are currently no detailed sampling procedures for test kits that would be applicable to PCBs evaluation. However, test kit technology may be a useful paradigm for PCBs evaluation if a kit can be developed to test PCBs at an acceptable concentration that uses a repeatable methodology to meet the data quality objectives.

2.2.2 LBP Sampling Procedures: XRF Devices

The following sections summarize LBP evaluation procedures for XRF devices, including description of sampling equipment, collection techniques and frequency, sample analysis, and quality assurance.

LBP Analyzers

According to the HUD Guidelines, portable XRF devices are the most common primary analytical method for inspections in housing because of their versatility in analyzing a wide variety of surface types, non-destructive measurement, high speed, and low cost per sample. Each XRF device must have a HUD-issued XRF Performance Characteristic Sheet (PCS), which contains information about XRF readings taken on specific surface types, calibration check tolerances, and interpretation of XRF readings.

Collection Techniques and Frequency

HUD Guidelines provide separate sampling techniques for single- and multi-family housing. However, the general approach to sampling is the following seven-step procedure:

- List all testing combinations of building components and substrates (e.g., wood doors, metal doors, plaster walls, concrete walls);
- Select testing combinations. A numbering system, floor plan, sketch or other system may be used to document which testing combinations were tested;
- Perform XRF testing, including calibration;
- Collect and analyze paint-chip samples as needed;
- Classify XRF and paint-chip results;
- Evaluate the work and results to ensure the quality of the inspection; and
- Document the findings in a summary and in a complete technical report.

Because of the large surfaces and quantities of paint involved, and the potential for spatial variation, HUD Guidelines recommend taking at least four readings per room, with special attention paid to surfaces that clearly have different painting history. The selection of test locations should be representative of locations most likely to be coated with old paint or other lead-based coatings, such as areas with thick paint; areas with worn or scraped off paint should be avoided.

For large buildings with many similar units, HUD Guidelines recommend testing a designated sample of units to provide 95% confidence that most units are below the lead standard. The sample size should be carefully chosen using statistical techniques (see HUD Guidelines, Table 7.3).

Sample Analysis

Portable XRF devices expose a surface to X-ray or gamma radiation and measure the emission of characteristic X-rays from each element in the analyzed surface. The XRF reading is compared with a range specified in the PCS for the specific XRF device being
used and the specific substrate beneath the painted surface. When discrepancies exist between the PCS, HUD Guidelines, and the XRF device’s manufacturer’s instructions, the most stringent guideline should be followed.

Quality Assurance

HUD Guidelines provide several techniques for evaluation of inspection quality.

A knowledgeable observer independent of the inspection firm should be present for as much XRF testing as possible, especially if they have knowledge of LBP evaluation and/or the paint history of the facility.

The client should ask the inspector to provide copies of the results as soon as possible, or daily, allowing for immediate review.

Data from HUD’s private housing lead-based paint hazard control program show that it is possible to successfully retest painted surfaces without knowing the exact spot which was tested. Therefore, the client may consider selecting 10 testing combinations for retesting at random from the already compiled list of all testing combinations, using the XRF device used for the original measurements, if possible. The average of the 10 repeat XRF results should not differ from the 10 original XRF results by more than the retest tolerance limit. The procedure for calculating the retest tolerance limit is specified in the PCS. If the limit is exceeded, the procedure should be repeated using 10 different testing combinations. If the retest tolerance limit is exceeded again, the original inspection is considered deficient.

Currently XRF technology and methods are not applicable to PCBs building material evaluation, as the precision is not adequate to provide a concentration that could be relied upon for this program.

2.2.3 LBP Sampling Procedures: Laboratory Testing of Paint Chips

The following sections summarize LBP evaluation procedures for XRF devices, including the description of sampling equipment, collection techniques and frequency, sample analysis, and quality assurance.

Laboratory analysis of paint chip samples is only recommended by HUD for inaccessible areas or building components with irregular (non-flat) surfaces that cannot be tested using XRF devices, for confirmation of inconclusive XRF results, or for additional confirmation of conclusive XRF results.

Unlike XRF analysis, paint chip collection techniques may be more directly applicable to potential PCBs collection techniques.
Sampling Equipment

Common hand tools can be used to scrape paint chips from a surface; specialized equipment is not necessary. However, HUD Guidelines recommend that samples should be collected in sealable rigid containers rather than plastic bags, which generate static electricity and make laboratory transfer difficult.

Collection Techniques

HUD Guidelines, which are consistent with ASTM E1729, Standard Practice for Field Collection of Dried Paint Samples for Subsequent Lead Determination, recommend that only one paint chip needs to be taken for each testing combination, although additional samples are recommended for quality control.

The paint chip sample should be taken from a representative area that is at least 4 square inches in size. The dimensions of the surface area must be accurately measured to the nearest 1/16th of an inch so that laboratory results can be reported in units of mg/cm². Paint chip collection should include collection of all the paint layers from the substrate, but collection of actual substrate should be minimized. Any amount of substrate included in the sample may cause imprecise results.

Sample Analysis

A laboratory used for LBP analysis must be recognized under EPA’s National Lead Laboratory Accreditation Program (NLLAP) for the analysis of lead paint; however, States or Tribes may operate an EPA-authorized lead-based paint inspection certification program with different requirements.

There are several standard laboratory techniques to quantify lead in paint chip samples, including Atomic Absorption Spectroscopy, Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES), Anodic Stripping Voltammetry, and Potentiometric Stripping Analysis.

For analytical methods that require sample digestion, samples should be pulverized so there is adequate surface area to dissolve the sample before laboratory instrument measurement. In some cases, the amount of paint collected from a 4-square-inch area may exceed the amount of paint that can be analyzed successfully. It is important that the actual sample mass analyzed not exceed the maximum mass the laboratory has successfully tested using the specified method. If subsampling is required to meet analytical method specifications, the laboratory must homogenize the paint chip sample (unless the entire sample will eventually be analyzed, and the results of the subsamples combined). Without homogenization, subsampling would likely result in biased, inaccurate lead results. If the sample is properly homogenized and substrate inclusion is negligible, the result can be reported as a loading, in milligrams per square centimeter (mg/cm²), the preferred unit, or as percent by weight, or both.
Quality Assurance

Laboratory reference materials processed with the paint chip samples for quality assurance purposes should have close to the same mass as those used for paint-chip samples (refer to ASTM methods E1645, E1613, E2051, and E1775).

Reporting

The laboratory report for analysis of paint chip samples should include at a minimum, the information outlined in the EPA National Lead Laboratory Accreditation Program Laboratory Quality System Requirements, Revision 3.0, section 5.10.2, Test Reports⁹. In addition to those minimum requirements, test reports containing the results of sampling must include specified sampling information, if available.

3. PCBS BUILDING MATERIAL EVALUATION PROTOCOL

This section presents the evaluation protocol for identifying building materials in structures constructed or remodeled between the years 1950 and 198010 that may contain a significant mass of PCBs. Once identified as containing PCBs at concentrations exceeding 50 ppm, these materials should be properly managed prior to building demolition, to ensure PCBs are not discharged to the municipal storm drain system.

This protocol is not intended to address all PCBs-containing materials that may disturbed during building demolition. Additional sampling is likely to be required to comply with EPA and Cal/OSHA regulations pertaining to the management, removal and disposal of PCBs-containing materials.

For this program, it is assumed that organizations and staff qualified to sample, test, remediate, and dispose of PCBs at the building site will coordinate processes for other hazardous building materials at the building site, to ensure proper sampling, testing, remediation, and disposal or all statutorily-required hazardous materials handling.

3.1 Priority Building Materials to be Tested

A prioritized list of PCBs-containing materials is provided in Appendix A. Building materials were evaluated based upon the following criteria:

- **Source Material** – Does the building material contain PCBs through the original product manufacturing process or was the building material contaminated (impregnated) with PCBs from an adjacent building material that already contained PCBs? For the evaluation, building materials originally manufactured with PCBs at or above 50 mg/kg were prioritized.

- **Concentration** – Building materials were evaluated based on readily available existing data regarding ranges of PCBs concentrations identified in the materials.

- **Prevalence** – A prevalence factor was assigned based upon best professional judgement of the prevalence of occurrence of the PCBs-containing materials in buildings, which ranged from highly prevalent to low prevalence.

- **Ease of Removal** – Building materials were evaluated based on their attachment to the building, which ranged from “very easily removed” to “difficult to remove,” under the assumption that higher ease of removal results in higher feasibility and lower costs for removing a material before demolition.

10 Single-family residential and wood frame structures are exempt.
• **Flaking/Crumbling** – Building materials were evaluated based on their tendency to flake or crumble during disturbance or demolition, which could lead to a higher likelihood of entering stormwater as a result of building demolition.

• **PCBs Removed by Other Waste Program** – This factor addresses materials that are removed from buildings because of other waste management programs (e.g., Universal Waste Rule). Fluorescent light ballasts\(^\text{11}\), polyurethane foam furniture, and Askarel fluid used in transformers, all of which may contain PCBs, are typically managed during pre-demolition activities under current regulations and programs that require removal of universal waste and outdated transformers. For this program it is assumed that those materials will be evaluated and managed under those existing programs.

Material prioritization was conducted by assigning a score on a scale of 1 to 5 (low to high) for each criterion. The final score for each material type was calculated as the average of the scores assigned to the six criteria. The materials given the highest scores through the prioritization analysis are shown below, along with their typical locations in a building. For this evaluation, thermal insulation and fiberglass insulation were grouped together as they tend to be co-located and are typically managed together. The materials listed below (along with typical locations where they are found) are the materials that should be sampled using the protocols described in Section 3.2.

1. **Caulks and Sealants:**
 a. Around windows or window frames;
 b. Around door frames; and
 c. Expansion joints between concrete sections (e.g., floor segments).

2. **Thermal/Fiberglass Insulation and Other Insulating Materials:**
3. **Around HVAC systems,**
 a. Around heaters,
 b. Around boilers,
 c. Around heated transfer piping, and
 d. Inside walls or crawls spaces.

4. **Adhesive/Mastic:**
 a. Below carpet and floor tiles;

\(^{11}\) Fluorescent light ballasts that contain PCBs are not required to be managed under the Universal Waste Rule Program but are recommended by the EPA to be identified in a pre-demolition survey of a structure and to be managed with the removal of other required wastes in the abatement process.
b. On, under, or between roofing materials and flashing.

5. Rubber Window Seals/Gaskets:
 a. Around windows or window frames.

Examples of the prioritized PCBs-containing building materials and what they may look like in a building planned for demolition are provided in Appendix B.

3.2 PCBs Sampling Procedures

Many building materials may contain PCBs. The building owner is responsible for identifying and handling all hazardous materials in accordance with all applicable laws, including all materials with 50 ppm or more PCBs. For purposes of obtaining a demolition permit, the City requires a building owner to sample the limited number of materials shown below:

1. **Caulks and Sealants:**
 a. Around windows or window frames;
 b. Around door frames; and
 c. Expansion joints between concrete sections (e.g., floor segments).

2. **Thermal/Fiberglass Insulation and Other Insulating Materials:**
 a. Around HVAC systems,
 b. Around heaters,
 c. Around boilers,
 d. Around heated transfer piping, and
 e. Inside walls or crawls spaces.

3. **Adhesive/Mastic:**
 a. Below carpet and floor tiles;
 b. On, under, or between roofing materials and flashing.

4. **Rubber Window Seals/Gaskets:**
 a. Around windows or window frames.

It should be noted that some materials that are being evaluated for PCBs in this protocol may also be associated with asbestos, lead, or other hazardous substances. Since this protocol follows pre-established asbestos management program guidelines and procedures, the sampling frequency, types of building materials, and surveying
techniques overlap with the PCBs survey protocol. If a material has been determined to contain asbestos, lead or other hazardous substances and will be abated under an associated waste program, that material need not be sampled for PCBs under this program.

3.2.1 Sampling Equipment

Building materials that are planned to be collected for laboratory analysis should be placed in laboratory-supplied glass jars with Teflon-sealed lids. Samples should be collected with either factory-sealed or decontaminated equipment that will be used to remove a representative building material sample (i.e., scissors, tweezers, pliers, spoons, or putty knife).

For sampling equipment (i.e., scissors, tweezers, pliers, spoons, putty knife, etc.) that will be decontaminated, the following three bucket wash procedure should be performed, which is in general accordance with standard decontamination procedures defined in SESDPROC-205-R3 (EPA, 2015):

- In the first bucket, mix a residue free cleaning detergent (e.g., Alconox®), with distilled water to generate the recommended detergent concentration specified in the product directions;

- Fill the second bucket with distilled water;

- Fill the third bucket with distilled water;

- Clean the equipment in the first bucket with the cleaning detergent, then rinse in the second and then the third bucket. If the second bucket becomes slightly discolored during the rinse, change the contents of the second bucket with distilled water. Change the third bucket, if any dirt or material is observed in the water, since the third bucket needs to stay clean as it is the final rinse; and

- At the end of cleaning, let the equipment air dry in a clean area before use in sample collection. The rinse water should then be drummed and sampled for disposal. The planned disposal facility should be contacted to determine the required sample analysis for the rinse water characterization and profiling and that the disposal procedures comply with state and federal regulations.

If disposable sampling tools are used, the above decontamination procedures do not apply.

3.2.2 Sample Collection Frequency

For the four prioritized building materials, the following collection techniques and frequency should be followed.
Caulking

Three different types of caulking should be evaluated:

1. Window caulking;
2. Door frame caulking; and
3. Floor and expansion joint caulking.

For each type of caulking material identified, the following number of samples should be collected:

- Collect at least one sample from each homogenous area that contains less than 50 linear feet of caulking;
- Collect at least three samples from each homogenous area that contains between 50 and 250 linear feet of caulking;
- Collect at least five samples from each homogenous area that contains between 250 and 1,000 linear feet of caulking;
- Collect at least seven samples from each homogenous area that contains between 1,000 and 2,500 linear feet of caulking; and
- Collect at least nine samples from each homogenous area that contains greater than 2,500 linear feet of caulking.

If homogenous caulking material is found throughout the building, samples should be spatially distributed so as to not collect the required number of samples from one area. In addition, the width or cross-sectional area of the caulking bead is not relevant for determining the linear footage to be sampled. It is also recommended that the sampler performing the evaluation inspect the entire building prior to sample collection to insure proper distribution is performed.

Thermal/Fiberglass Insulation

For thermal/fiberglass insulation:

- Collect at least one bulk sample from each homogeneous area.

Adhesive/Mastic

For each type of adhesive/mastic material identified, the following number of samples should be collected:

- Collect at least three samples from each homogenous area less than 1,000 square feet;
- Collect at least five samples from each homogenous area between 1,000 and 5,000 square feet; and
- Collect at least seven samples from each homogenous area greater than 5,000 square feet.
If homogenous adhesive/mastic material is found throughout the building, samples should be spatially distributed so as to not collect the required number of samples from one area. It is recommended that the sampler performing the evaluation inspect the entire building prior to sample collection to insure proper distribution is performed.

Rubber Window Seals/Gaskets

For rubber window seals/gaskets identified, the following number of samples should be collected:

- Collect at least one sample from each homogenous area that contains less than 50 linear feet of caulking (of any width or cross-sectional area of bead);
- Collect at least three samples from each homogenous area that contains between 50 and 250 linear feet of caulking;
- Collect at least five samples from each homogenous area that contains between 250 and 1,000 linear feet of caulking;
- Collect at least seven samples from each homogenous area that contains between 1,000 and 2,500 linear feet of caulking; and
- Collect at least nine samples from each homogenous area that contains greater than 2,500 linear feet of caulking.

If homogenous rubber window seals/gaskets are found throughout the building, samples should be spatially distributed so as to not collect the required number of samples from one area. It is also recommended that the sampler performing the evaluation inspect the entire building prior to sample collection to insure proper distribution is performed.

3.2.3 Sample Analysis and Preservation

Samples collected to evaluate building materials for PCBs should be analyzed for Aroclors by EPA Method 8082/8082A\(^\text{12}\) by an accredited analytical laboratory. The minimum reporting limit should be 50 micrograms per kilogram (µg/kg) and the laboratory should be contacted before sampling to confirm minimum material volume required to meet the reporting limit objectives. A sample reporting limit of 50 µg/kg is well below the target management level of 50 mg/kg.

Samples should immediately be chilled in an ice cooler and then kept at 4 degrees Celsius (39.2 degrees Fahrenheit) or colder during storage and transportation to the laboratory.

\(^{12}\) Provision C.12.f. requires that Permittees develop and implement or cause to be developed and implemented an effective protocol for managing materials with PCBs concentrations of 50 ppm. EPA Method 8082/8082A is an acceptable method to quantify PCBs. Analysis of PCBs congeners is not required to meet the permit requirement.
Proper chain-of-custody procedures should be followed from the time the samples are collected until they are delivered to the laboratory for analysis. Holding times for EPA Method 8082/8082A are sample extraction within 14 days of sample collection and analysis of the extract within 40 days of extraction. However, PCBs are very stable in a variety of matrices and holding times may be extended to as long as one year. Once extracted, analysis of the extract should take place within 40 days.

3.2.4 Quality Assurance and Quality Control

For this program, general quality assurance and quality control (QA/QC) procedures will be utilized. The following checklist should be used by the contractor performing the evaluation:

- QA/QC Checklist:
 - Proper specified sampling equipment was used (pre-cleaned or other, stainless steel);
 - Proper decontamination procedures were followed;
 - Sampling collection spatial frequency was met;
 - A National Environmental Laboratory Accreditation Program (NELAP) laboratory was utilized;
 - Samples were received by the laboratory within proper temperature range;
 - Samples were extracted and analyzed within the method holding time for EPA Method 8082/8082A; and
 - Sample reporting limit met data quality objectives.

13 Chain-of-custody is the procedure to document, label, store, and transfer samples to personnel and laboratories. For a detailed list of procedures, refer to the Sample and Evidence Management, Operating Procedure(SESDPROC-005- R2), January 29, 2013
3.3 Reporting and Notifications

The following considerations are applicable to reporting and notification:

- Assessment results must be submitted to the applicable Permitting Authority by the project applicant;

- Applicants that determine PCBs exist in priority building materials must follow applicable federal and state laws. This may include reporting to USEPA, the San Francisco Bay Regional Water Quality Control Board, and the California Department of Toxic Substances Control (DTSC). These agencies may require additional sampling and abatement of PCBs.

- Depending on the approach for sampling and removing building materials containing PCBs, applicants may need to notify or seek advance approval from USEPA before building demolition. Even in circumstances where advance notification to or approval from USEPA is not required before the demolition activity, the disposal of PCBs waste is regulated under TSCA.

- The disposal of PCBs waste is subject to California Code of Regulations (CCR) Title 22, Section Division 4.5, Chapter 12, Standards Applicable to Hazardous Waste Generators.

- Building owners and employers need to consider worker and public safety during work involving hazardous materials and wastes including PCBs.

For further information, applicants should refer to the PCBs in Priority Building Materials Screening Assessment Applicant Package, BASMAA, July 2018.
4. REFERENCES

Guidelines for Asbestos Sampling:
 o https://www.epa.gov/asbestos/asbestos-laws-and-regulations

Guidelines for Lead-Based Paint Evaluations:
 o Environmental Protection Agency (EPA) - Created the Renovation, Repair, and Painting (RRP) Rule which requires training and certification for anyone working for compensation in pre-1978 residential structures, day care centers, and schools where known or assumed lead-based paint is impacted. The EPA website with complete information on this regulation is https://www.epa.gov/lead/renovation-repair-and-painting-program.
 o California Department of Public Health (CDPH) - Created "Title 17" which includes lead testing and abatement provisions in residential and public structures in California. Several important definitions are contained in Title 17 including Abatement, Clearance Inspection, Containment, Lead-Based Paint.
 o Lead Contaminated Dust and Soil, Lead Hazard, and Lead Hazard Evaluation. Title 17 establishes that lead testing be performed using XRF equipment or by paint chip sample analysis in California. Lead test kits are not accepted. It also establishes testing in California be performed by a State certified lead inspector/assessor if the testing is related to a project involving compensation.
 o Department of Housing and Urban Development (HUD) - Created the HUD Guidelines which contain protocols for lead testing and abatement.

EPA Method 8082A – Polychlorinated Biphenyls (PCBs) by Gas Chromatography

SESDPROC-005-R2, Sample and Evidence Management, Operating Procedure, January 29, 2013
APPENDIX A

PCBs Building Material Prioritization Worksheet
Appendix A - PCBs Building Materials Prioritization

<table>
<thead>
<tr>
<th>Material</th>
<th>Material Class</th>
<th>Median/Average/Single Reported Concentration (ppm)</th>
<th>Minimum (ppm)</th>
<th>Maximum (ppm)</th>
<th>PCBs Source Material? (Rating values: source = 5, or not source = 1)</th>
<th>Concentration (Rating values: 1 to 5, higher value means higher concentration)</th>
<th>Prevalence of PCBs Containing Material in Buildings (Rating values: high = 5, medium = 3, or low = 1)</th>
<th>Ease of Removal (Rating values: 1 to 5, higher value means easier to remove)</th>
<th>Flaking/ Crumbling (Rating values: 1 to 5, higher value means more likely to flake/crumble)</th>
<th>PCBs Removed by Other Waste Program? (Rating values: not removed by other = 5, or removed = 1)</th>
<th>Prioritization Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caulking (sealant, plaster)</td>
<td>Caulk/sealant/tape/glue</td>
<td>0.001</td>
<td>752,000</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4.67</td>
</tr>
<tr>
<td>Thermal insulation</td>
<td>Insulation</td>
<td>73,000</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>4.67</td>
</tr>
<tr>
<td>Fiberglass insulation</td>
<td>Insulation</td>
<td>39,158</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>4.50</td>
<td></td>
</tr>
<tr>
<td>Adhesives/mastic</td>
<td>Caulk/sealant/tape/glue</td>
<td>3,100</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4.33</td>
<td></td>
</tr>
<tr>
<td>Rubber gaskets</td>
<td>Gaskets/Rubber</td>
<td>84,000</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>4.17</td>
<td></td>
</tr>
<tr>
<td>Wool felt gaskets</td>
<td>Gaskets/Rubber</td>
<td>668,498</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>4.17</td>
<td></td>
</tr>
<tr>
<td>Cloth/paper insulating material</td>
<td>Insulation</td>
<td>12,000</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>4.17</td>
<td></td>
</tr>
<tr>
<td>Foam rubber insulation</td>
<td>Insulation</td>
<td>13,100</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>4.17</td>
<td></td>
</tr>
<tr>
<td>Ceiling tiles coated w/ flame resistant sealant</td>
<td>Internal nonstructural surface</td>
<td>53</td>
<td>110,000</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>4.17</td>
</tr>
<tr>
<td>Backer rod</td>
<td>Caulk/sealant/tape/glue</td>
<td>99,000</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>4.00</td>
<td></td>
</tr>
<tr>
<td>Roofing/siding material</td>
<td>External nonstructural surface</td>
<td>0</td>
<td>30,000</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>4.00</td>
</tr>
<tr>
<td>Paint (complete removal)</td>
<td>Paint/pigment/coatings</td>
<td>0.001</td>
<td>97,000</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>4.00</td>
</tr>
<tr>
<td>Insulating materials in electric cable</td>
<td>Electrical</td>
<td>0</td>
<td>280,000</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>3.83</td>
</tr>
<tr>
<td>Adhesive tape</td>
<td>Caulk/sealant/tape/glue</td>
<td>1,400</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>3.67</td>
<td></td>
</tr>
<tr>
<td>Surface coating</td>
<td>Paint/pigment/coatings</td>
<td>255</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>3.67</td>
<td></td>
</tr>
<tr>
<td>Coal-tar enamel coatings</td>
<td>Paint/pigment/coatings</td>
<td>1,264</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>3.67</td>
<td></td>
</tr>
<tr>
<td>Gout</td>
<td>Caulk/sealant/tape/glue</td>
<td>9,100</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>3.67</td>
<td></td>
</tr>
<tr>
<td>Cove base</td>
<td>Internal nonstructural surface</td>
<td>170</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>3.67</td>
<td></td>
</tr>
<tr>
<td>Plastics/plasticizers</td>
<td>Electrical</td>
<td>13,000</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>3.50</td>
</tr>
<tr>
<td>GE silicones</td>
<td>Caulk/sealant/tape/glue</td>
<td><1.9</td>
<td>0</td>
<td>1.8</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>3.50</td>
</tr>
<tr>
<td>Glazing</td>
<td>Caulk/sealant/tape/glue</td>
<td>Up to 100% liquid PCBs</td>
<td>51</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>3.50</td>
<td></td>
</tr>
<tr>
<td>Flooring and floor wax/sealant</td>
<td>Internal nonstructural surface</td>
<td>Maximum likely >50</td>
<td>51</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>3.33</td>
</tr>
<tr>
<td>Light ballast</td>
<td>Light ballasts</td>
<td>Minimum likely <50</td>
<td>49</td>
<td>1,200,000</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>3.33</td>
</tr>
<tr>
<td>Anti-fouling compounds</td>
<td>Paint/pigment/coatings</td>
<td>59,000</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>3.17</td>
<td></td>
</tr>
<tr>
<td>Polyurethane foam (furniture)</td>
<td>Caulk/sealant/tape/glue</td>
<td>50</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>3.17</td>
<td></td>
</tr>
<tr>
<td>Askarel fluid/cutting oils/hydraulic fluid</td>
<td>Oils/dielectric fluids</td>
<td>450,000</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>3.17</td>
<td></td>
</tr>
<tr>
<td>Fire retardant coatings</td>
<td>Paint/pigment/coatings</td>
<td>59,000</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>3.17</td>
<td></td>
</tr>
<tr>
<td>Waterproofing compounds</td>
<td>Paint/pigment/coatings</td>
<td>59,000</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>3.17</td>
<td></td>
</tr>
<tr>
<td>Electrical wiring</td>
<td>Electrical</td>
<td>14</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>3.17</td>
<td></td>
</tr>
<tr>
<td>Concrete</td>
<td>Concrete/stone</td>
<td>2.5</td>
<td>0.001</td>
<td>17,000</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>3.00</td>
</tr>
<tr>
<td>Foam rubber</td>
<td>Gaskets/Rubber</td>
<td>1,092</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>2.83</td>
<td></td>
</tr>
<tr>
<td>Soil/sediment/sand</td>
<td>Soil/dust</td>
<td>0.15</td>
<td>0.001</td>
<td>581</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>2.83</td>
</tr>
<tr>
<td>Brick/mortar/cinder block</td>
<td>Concrete/stone</td>
<td>1,100</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>2.83</td>
<td></td>
</tr>
<tr>
<td>Wood</td>
<td>Wood</td>
<td>380</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>2.83</td>
<td></td>
</tr>
<tr>
<td>Door frame</td>
<td>Internal nonstructural surface</td>
<td>102</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>2.83</td>
<td></td>
</tr>
<tr>
<td>Metals surfaces in contact with caulk/sealant</td>
<td>Metal surfaces</td>
<td>448</td>
<td>51</td>
<td>448</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>2.67</td>
</tr>
<tr>
<td>Material</td>
<td>Material Class</td>
<td>Median/Average/Single Reported Concentration (ppm)</td>
<td>Minimum (ppm)</td>
<td>Maximum (ppm)</td>
<td>PCBs Source Material? (Rating values: source = 5, or not source = 1)</td>
<td>Concentration (Rating values: 1 to 5, higher value means higher concentration)</td>
<td>Prevalence of PCBs Containing Material in Buildings (Rating values: high = 5, medium = 3, or low = 1)</td>
<td>Ease of Removal (Rating values: 1 to 5, higher value means easier to remove)</td>
<td>Flaking/ Crumbling (Rating values: 1 to 5, higher value means more likely to flake/crumble)</td>
<td>PCBs Removed by Other Waste Program? (Rating values: not removed by other = 5, or removed = 1)</td>
<td>Prioritization Score</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>--------------------------</td>
<td>--</td>
<td>---------------</td>
<td>---------------</td>
<td>---</td>
<td>--</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Asphalt</td>
<td>Concrete/stone</td>
<td>140</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>2.50</td>
<td></td>
</tr>
<tr>
<td>Carpet</td>
<td>Internal nonstructural surface</td>
<td>0.46</td>
<td>9.7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td>2.50</td>
<td></td>
</tr>
<tr>
<td>Stone (granite, limestone, marble, etc.)</td>
<td>Concrete/stone</td>
<td>130</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>2.33</td>
<td></td>
</tr>
<tr>
<td>Air handling system</td>
<td>Air system</td>
<td>0.46</td>
<td>9.7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>2.00</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX B
Priority Building
Materials Photographic Log
<table>
<thead>
<tr>
<th>Photograph 1</th>
<th>Photograph 2</th>
</tr>
</thead>
</table>
| **Window Caulking:**
Damaged caulking around a window. | **Window Caulking:**
Worn and potentially friable caulking around a window. |

Appendix B
Priority Building Materials to be Tested for PCBs
<table>
<thead>
<tr>
<th>Appendix B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Priority Building Materials to be Tested for PCBs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Photograph 3</th>
</tr>
</thead>
</table>

Door Frame Caulking:
Damaged, friable caulking on an interior door frame.

<table>
<thead>
<tr>
<th>Photograph 4</th>
</tr>
</thead>
</table>

Floor and Expansion Joint Caulking:
Joint compound between flooring segments.
Appendix B

Priority Building Materials to be Tested for PCBs

<table>
<thead>
<tr>
<th>Photograph 5</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Insulation:</td>
<td>Foam insulation material in an attic.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Photograph 6</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Insulation:</td>
<td>Damaged floor foam insulation.</td>
<td></td>
</tr>
</tbody>
</table>
Appendix B

Priority Building Materials to be Tested for PCBs

Photograph 7

Thermal Insulation:
Damaged pipe foam insulation.

Photograph 8

Thermal Insulation:
Exposed/damaged pipe insulation.
Appendix B

Priority Building Materials to be Tested for PCBs

<table>
<thead>
<tr>
<th>Photograph 9</th>
<th>Photograph 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Insulation:</td>
<td>Thermal Insulation:</td>
</tr>
<tr>
<td>Damaged pipe insulation.</td>
<td>Exposed pipe insulation.</td>
</tr>
</tbody>
</table>
Appendix B

Priority Building Materials to be Tested for PCBs

<table>
<thead>
<tr>
<th>Photograph 11</th>
<th>Adhesive / Mastic: Friable adhesive on a cement surface.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Photograph 12</th>
<th>Adhesive / Mastic: Adhesive beneath a carpet.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix B

Priority Building Materials to be Tested for PCBs

<table>
<thead>
<tr>
<th>Photograph 13</th>
<th>Photograph 14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adhesive / Mastic:</td>
<td>Adhesive / Mastic:</td>
</tr>
<tr>
<td>Adhesive remnants on flooring.</td>
<td>Exposed adhesive on roofing.</td>
</tr>
</tbody>
</table>
Appendix B

Priority Building Materials to be Tested for PCBs

<table>
<thead>
<tr>
<th>Photograph 15</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rubber Window Seal/Gasket:</td>
<td>Grey rubber window seal/gasket in a wood type frame.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Photograph 16</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rubber Window Seal/Gasket:</td>
<td>Off white rubber window seal/gasket in an aluminum type frame.</td>
</tr>
</tbody>
</table>