Hilton Garden Inn
Initial Study and Mitigated Negative Declaration (SCH# TBD)
for the City of Walnut Creek

March 2018
March 2018

Hilton Garden Inn
Initial Study and Mitigated Negative Declaration (SCH# TBD) for the City of Walnut Creek

Prepared By:

PLACEWORKS
1625 Shattuck Avenue, Suite 300
Berkeley, California 94709
510.848.3815

In Association With:
TJKM Transportation Consultants
Table of Contents

1. **INTRODUCTION** .. 1-1
 1.1 Initial Study ... 1-1
 1.2 Report Organization ... 1-1

2. **INITIAL STUDY CHECKLIST** ... 2-1

3. **PROJECT DESCRIPTION** ... 3-1
 3.1 Project Site Location and Site Characteristics .. 3-1
 3.1.1 Regional and Local Location ... 3-1
 3.1.2 Existing Site Character .. 3-4
 3.1.3 General Plan and Zoning Designation ... 3-4
 3.2 Proposed Project Components .. 3-5
 3.2.1 Rezoning ... 3-5
 3.2.2 Hotel ... 3-5
 3.2.3 Access and Circulation ... 3-8
 3.2.4 Parking ... 3-10
 3.2.5 Landscaping ... 3-10
 3.2.6 Lighting .. 3-12
 3.2.7 Signage ... 3-12
 3.2.8 Utilities ... 3-12
 3.2.9 Site Preparation and Construction ... 3-17
 3.3 Required Approvals .. 3-18

4. **ENVIRONMENTAL ANALYSIS AND FINDINGS** .. 4-1
 I. Aesthetics ... 4-2
 II. Air Quality .. 4-5
 III. Cultural Resources ... 4-15
 IV. Tribal Cultural Resources ... 4-19
 V. Geology and Soils .. 4-21
 VI. Greenhouse Gas Emissions ... 4-28
 VII. Hazards And Hazardous Materials .. 4-35
 VIII. Hydrology and Water Quality .. 4-47
 IX. Land Use and Planning ... 4-55
 X. Noise ... 4-60
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>XI. Population and Housing</td>
<td>4-75</td>
</tr>
<tr>
<td>XII. Public Services</td>
<td>4-77</td>
</tr>
<tr>
<td>XIII. Parks and Recreation</td>
<td>4-79</td>
</tr>
<tr>
<td>XIV. Transportation and Circulation</td>
<td>4-81</td>
</tr>
<tr>
<td>XV. Utilities and Service Systems</td>
<td>4-110</td>
</tr>
<tr>
<td>XVI. Mandatory Findings of Significance</td>
<td>4-118</td>
</tr>
<tr>
<td>5. MITIGATION MONITORING OR REPORTING PROGRAM</td>
<td>5-1</td>
</tr>
<tr>
<td>6. ORGANIZATIONS AND PERSONS CONSULTED</td>
<td>6-1</td>
</tr>
<tr>
<td>Lead Agency</td>
<td>6-1</td>
</tr>
<tr>
<td>Report Preparers</td>
<td>6-1</td>
</tr>
</tbody>
</table>

APPENDICES

- **Appendix A**: Floor Plans
- **Appendix B**: Air Quality and Greenhouse Gas Emissions Data
- **Appendix C**: Health Risk Assessment
- **Appendix D**: Geotechnical Report
- **Appendix E**: Hazards and Hazardous Materials Data
- **Appendix F**: Stormwater Control Plan
- **Appendix G**: Noise Data
- **Appendix H**: Arborist Report
- **Appendix I**: Traffic Impact Study Report
LIST OF FIGURES

Figure 3-1 Regional and Vicinity Map ... 3-2
Figure 3-2 Aerial View of Project Site and Surroundings 3-3
Figure 3-3 Conceptual Site Plan ... 3-7
Figure 3-4 Exterior Elevations ... 3-9
Figure 3-5 Preliminary Landscaping Plan .. 3-11
Figure 3-7 Preliminary Grading Plan ... 3-14
Figure 3-8 Preliminary Stormwater Plan .. 3-16
Figure 4-1 Geologic Map .. 4-23
Figure 4-2 Soil Type and Shaking Hazard ... 4-24
Figure 4-3 Existing Conditions Peak Hour Traffic Volumes 4-84
Figure 4-4 Existing Lane Geometry and Traffic Controls 4-85
Figure 4-5 Existing Pedestrian, Bicycle, and Transit Facilities 4-88
Figure 4-6 Project Trip Distribution and Assignment 4-93
Figure 4-7 Existing plus Project Conditions Peak Hour Traffic Volumes 4-96
Figure 4-8 Background plus Project Conditions Peak Hour Traffic Volumes ... 4-98
Figure 4-9 Cumulative plus Project Conditions Peak Hour Traffic Volumes ... 4-100
List of Tables

- Table 4-1: Construction-Related Criteria Air Pollutant Emissions Estimates ... 4-10
- Table 4-2: Construction HRA Results ... 4-12
- Table 4-3: Construction Risk Summary – Mitigated .. 4-13
- Table 4-4: Project GHG Emissions – Construction Phase ... 4-30
- Table 4-5: Project GHG Emissions – Operational Phase ... 4-32
- Table 4-6: Consistency with the City of Walnut Creek Climate Action Plan Strategies 4-33
- Table 4-7: City of Walnut Creek 2025 General Plan Policies Relevant to the Proposed Project 4-58
- Table 4-8: Existing and Future Noise Level Estimates .. 4-65
- Table 4-9: Typical Vibration Levels Produced by Common Construction Equipment 4-68
- Table 4-10: Construction Equipment Vibration Levels .. 4-69
- Table 4-11: Project-Related Construction Noise, Energy-Average (Leq) Sound Levels, dBA 4-74
- Table 4-12: Signalized Intersection Level of Service Criteria .. 4-89
- Table 4-13: Unsignalized Intersection Level of Service Criteria ... 4-89
- Table 4-14: Project Trip Generation ... 4-92
- Table 4-15: Trip Distribution Assumptions .. 4-92
- Table 4-16: Intersection Level of Service Analysis – Existing plus Project Conditions 4-95
- Table 4-17: Intersection Level of Service Analysis – Background plus Project Conditions 4-97
- Table 4-18: Intersection Level of Service Analysis – Cumulative plus Project Conditions 4-99
- Table 4-19: 95th Percentile Queues at Turn Pockets Affected by Project Traffic .. 4-101
- Table 4-20: Freeway Segment Level of Service Analysis – Existing plus Project Conditions 4-102
- Table 4-21: Ramp Terminal Level of Service Analysis – Existing plus Project Conditions 4-103
- Table 4-22: Freeway Segment Level of Service Analysis – Background plus Project Conditions 4-104
- Table 4-23: Ramp Terminal Level of Service Analysis – Background plus Project Conditions 4-105
- Table 4-24: Freeway Segment Level of Service Analysis – Cumulative plus Project Conditions 4-106
- Table 4-25: Ramp Terminal Level of Service Analysis – Cumulative plus Project Conditions 4-107
- Table 5-1: Mitigation Monitoring or Reporting Program .. 5-2
1. Introduction

This document is an Initial Study and Mitigated Negative Declaration (IS/MND) for the Hilton Garden Inn (proposed project) prepared by the City of Walnut Creek (City) to determine if the project may have a significant effect on the environment as defined in the California Environmental Quality Act (CEQA) (Public Resources Code Sections 21000 et seq.). Pursuant to Section 15051 of the State CEQA Guidelines, the City is the Lead Agency for the proposed project.

The project site is located on the northwest corner of southwest corner of Lawrence Way and Penniman Way at 470-490 Lawrence Way and is assigned Assessor’s Parcel Numbers (APN’s) 173-121-046 and -047. The proposed project would demolish the existing building and construct a new hotel development on 2.26 acres of land. The project would consist of 124 hotel rooms with a total floor area of 72,964 square feet. The project also includes surface parking with 113 spaces, landscaping, and on-site amenities. The project site is currently zoned Auto Sales & Service (A-S) and is located within the Auto Sales & Service (AS) land use designation in the Walnut Creek General Plan.

1.1 Initial Study

Pursuant to Section 15063 of the CEQA Guidelines, an Initial Study is a preliminary environmental analysis that is used by the lead agency as a basis for determining what form of environmental review is required for a project. The CEQA Guidelines require that an Initial Study contain a project description, description of environmental setting, identification of environmental effects by checklist or other similar form, explanation of environmental effects, discussion of mitigation for significant environmental effects, evaluation of the project’s consistency with existing and applicable land use controls, and the name of persons who prepared the study.

1.2 Report Organization

This Initial Study is organized into the following chapters:

Chapter 1: Introduction. This chapter provides an introduction and overview of the Initial Study document.

Chapter 2: Initial Study Checklist. This chapter summarizes pertinent details for the proposed project, including lead agency contact information, proposed project location, and General Plan and Zoning designations.

1 The CEQA Guidelines are found in California Code of Regulations, Title, 14, Sections 15000 et seq.
Chapter 3: Project Description. This chapter describes the location and setting of the proposed project, along with its principal components, as well as a description of the policy setting and implementation process for the proposed project.

Chapter 4: Environmental Analysis and Findings. Making use of the CEQA Guidelines Appendix G, Environmental Checklist, and Appendix F, Energy Conservation, this chapter identifies and discusses anticipated impacts from the proposed project, providing substantiation of the findings made. The chapter concludes with the determination, based on the analysis contained in this Initial Study, that a Mitigated Negative Declaration is appropriate for the proposed project.

Chapter 5: Mitigation Monitoring Report. This chapter identifies the recommended mitigation measures as well as the conditions set forth for project approval categorized by impact area.

Chapter 6: Organizations and Persons Consulted. This chapter presents a list of City and other agencies and consultant team members that contributed to the preparation of the Initial Study.
2. Initial Study Checklist

1. Project Title: Hilton Garden Inn

2. Lead Agency Name and Address: City of Walnut Creek
 Community and Economic Development Department
 1666 North Main Street
 Walnut Creek, CA 94596

3. Contact Person and Phone Number: Chip Griffin
 Senior Planner
 (925) 943-5899

4. Project Location: 470-490 Lawrence Way
 Walnut Creek, CA 94596

5. Project Applicant’s Name and Address: Don Cape
 Tharaldson Hospitality Development
 4255 Dean Martin Drive, Suite J
 Las Vegas, NV 89103

6. General Plan Land Use Designation: Auto Sales & Service (AS)

7. Zoning: Auto Sales & Service (A-S)

8. Description of Project: See Project Description in Chapter 3

9. Surrounding Land Uses and Setting: See Project Description in Chapter 3

10. Other Public Agencies whose Approval is Required:
 The City of Walnut Creek is the lead agency responsible for approving the proposed project and the Mitigated Negative Declaration; however, permits from the Regional Water Quality Control Board and the California Department of Toxic Substance Control would be required for construction of the project.

11. Have California Native American Tribes traditionally and culturally affiliated with the project area requested consultation pursuant to Public Resources Code section 21080.3.1? If so, has consultation begun? The City of Walnut Creek has not received any request from any Tribes in the geographic area with which it is traditionally and culturally affiliated with or otherwise to be notified about projects in the City of Walnut Creek.
INTEGRATION BY REFERENCE
All documents cited in this report and used in its preparation are hereby incorporated by reference into this Initial Study. Copies of documents referenced herein are available for review at the City of Walnut Creek Community and Economic Development Department, 1666 North Main Street, Walnut Creek, CA 94596.

ENVIRONMENTAL FACTORS POTENTIALLY AFFECTED
The environmental factors checked below would be potentially affected by the proposed project, involving at least one impact that is a Potentially Significant Impact, as shown in Chapter 4 of this Initial Study.

☐ Aesthetics ☐ Agriculture & Forestry Resources ☒ Air Quality
☐ Biological Resources ☒ Cultural Resources ☒ Tribal Cultural Resources
☒ Geology & Soils ☐ Greenhouse Gas Emissions ☒ Hazards & Hazardous Materials
☐ Hydrology & Water Quality ☒ Land Use ☐ Mineral Resources
☐ Noise ☐ Population & Housing ☒ Public Services
☐ Recreation ☒ Transportation/Traffic ☐ Utilities & Service Systems
☐ Mandatory Findings of Significance

DETERMINATION:
On the basis of this initial evaluation:

☐ I find that the proposed project COULD NOT have a significant effect on the environment and a NEGATIVE DECLARATION will be prepared.
☒ I find that although the proposed project could have a significant effect on the environment, there will not be a significant effect in this case because revisions in the Project have been made by or agreed to by the project proponent. A MITIGATED NEGATIVE DECLARATION will be prepared.
☐ I find that the proposed Project MAY have a significant effect on the environment, and an ENVIRONMENTAL IMPACT REPORT is required.
☐ I find that the proposed project MAY have a “potentially significant impact” or “potentially significant unless mitigated” impact on the environment, but at least one effect 1) has been adequately analyzed in an earlier document pursuant to applicable legal standards, and 2) has been addressed by mitigation measures based on the earlier analysis as described on attached sheets. An ENVIRONMENTAL IMPACT REPORT is required, but it must analyze only the effects that remain to be addressed.
☐ I find that although the proposed project could have a significant effect on the environment, because all potentially significant effects (a) have been analyzed adequately in an earlier EIR or NEGATIVE DECLARATION pursuant to applicable standards, and (b) have been avoided or mitigated pursuant to that earlier EIR or NEGATIVE DECLARATION, including revisions or mitigation measures that are imposed upon the proposed project, nothing further is required.

Approved by: ____________________________ ____________________________
Chip Griffin, Senior Planner Date
City of Walnut Creek Community and Economic Development Department
3. **Project Description**

Tharaldson Hospitality Development, the project applicant (applicant), is proposing the Hilton Garden Inn (herein referred to as the “proposed project”). The proposed project would involve demolishing the existing two City-owned buildings and redeveloping the project site with a hotel development on 2.26 acres covering two parcels located at 470-490 Lawrence Way. The proposed project would consist of a four-story hotel with 124 guest rooms, 113 on-site parking spaces at grade, on-site guest amenities and landscaping. This chapter provides a description of the proposed project, including the location, setting, and characteristics of the project site, a construction schedule, and required permits and approvals. The environmental setting by topic area is included in Chapter 4, Environmental Checklist and Findings, of this Initial Study/Mitigated Negative Declaration (IS/MND).

3.1 **PROJECT SITE LOCATION AND SITE CHARACTERISTICS**

3.1.1 **REGIONAL AND LOCAL LOCATION**

The project site is located in the central portion of the City of Walnut Creek in Contra Costa County. Walnut Creek is bordered by the City of Concord to the north, unincorporated Contra Costa County to the east and south, and the City of Lafayette to the west. Regional access to the project site is provided via Interstate 680 (I-680), which is a six-lane freeway to the west of the project site. Access to the project site from I-680 is provided from the eastbound Ygnacio Valley Road exit and the westbound North Main Street exit. Local access to the project site is provided by Lawrence Way. The project site is located approximately 26 miles east of Oakland International Airport (OAK) via Interstate 880 (I-880) and California Highway 24 (CA-24). Buchanan Field Airport is located approximately 6 miles to the north of the project site. The project site is located 0.5 miles northeast of the Walnut Creek Bay Area Rapid Transit District (BART) station, and is 1 mile south of the Pleasant Hill Centre BART station¹ (see Figure 3-1).

The project site is located at the southwest corner of Lawrence Way and Penniman Way. Lawrence Way is a two-lane roadway in a one-way configuration, with traffic running in a northbound direction. Penniman Way is a two-lane east-west roadway connecting North Main Street and Lawrence Way and an on-ramp for northbound I-680. The project site is located between car dealer parking to the south and commercial buildings to the west, Lawrence Way and BART tracks to the east, and Penniman Way and I-680 to the north. Nearby land uses include auto dealerships, hotel and fast-food uses along Lawrence Way and North Main Street. The project site is bound by existing sidewalks on Lawrence Way and North Main Street. The Lawrence Way/North Main Street intersection is un-signalized with pedestrian crosswalks (see Figure 3-2).

HILTON GARDEN INN IS/ MD
CITY OF WALNUT CREEK

PROJECT DESCRIPTION

Figure 3-1

Regional Location

Source: City of Walnut Creek, 2017; Placeworks, 2017.
Figure 3-2
Aerial View of Project Site and Surroundings

San Luis Road
San Juan Avenue
North Main Street
Lawrence Way
North Civic Drive
Senator Daniel E. Boatwright HWY
Pine Street
Parkside Drive
Penniman Way
680

Source: Google Earth, Image Date: 3-11-2017; PlaceWorks 2017.
3.1.2 EXISTING SITE CHARACTER

As shown on Figure 3-2, the project site includes two parcels, covering a total area of 2.26 acres, and is currently developed with surface parking and two structures, which are currently occupied and used for City administrative purposes. Additionally, the City temporarily leases approximately 12,000 square feet of area in the southern portion of the project site to an adjacent car dealer for automobile inventory storage. The existing structures were constructed sometime between 1946 and 1958 and the site served as a storage yard. Prior to its current use for the City of Walnut Creek traffic operations, City Impound Yard, and City recycling drop-off center, the site was occupied by a medical laboratory. The topography of the project site is relatively flat, approximately 120 feet above mean sea level. The project site includes 15 trees of varying species and sizes located around the perimeter of the project site (see Figure 3-3).

3.1.3 GENERAL PLAN AND ZONING DESIGNATION

3.1.3.1 GENERAL PLAN

The project site consists of two parcels assigned Assessor’s Parcel Numbers (APN’s) 173-121-046 and -047. The City of Walnut Creek 2025 General Plan designates the project site as Auto Sales & Service (AS), a land use designation intended primarily for auto-related and auto-oriented uses. Uses in this land use designation generally include auto dealers, auto service and repair uses. Businesses not associated with auto sales, service, or repair are allowed only if they demonstrate their presence will have no adverse effect on the long-term viability of the AS designation. The project is consistent with the existing land use category, such that the project requires no change to the General Plan designation. Further, the project observes the Moderate General Plan (15 foot average) setback requirement along the Lawrence Way frontage. The project area is oddly shaped and predominantly surrounded on two sides by roadways that serve primarily as freeway on and or off ramps. The site is not an integral part of the larger, multi-parcel block of properties to the west that front along North Main Street that share the same Auto Sales and Service designation in the General Plan and zoning. With the exception to providing a small area for offsite storage of vehicles, the property has long been used by the City for uses such as recycling, equipment storage and other corporation yard needs including the Traffic Operations Center (TOC).

3.1.3.2 ZONING

The project site has a zoning designation of Auto Sales & Service (A-S). This Zoning District is intended to provide a distinct commercial district which reserves land area primarily for auto dealers, auto service and other related auto oriented retail uses. The A-S zoning designation has a maximum building height of

2 Site Investigation Work Plan: 470, 480, 490 Lawrence Way Properties Walnut Creek, California. The Source Group, June 29, 2015, page 2-3.

3 City of Walnut Creek, April 4, 2006. General Plan 2025, adopted 2006, Land Use Element, page 4-6.
3.2 PROPOSED PROJECT COMPONENTS

As previously stated, the proposed project requires demolishing the existing 8,488-square-foot commercial building and redeveloping the project site with a new 72,964-square-foot, 124-room hotel. The total building footprint coverage would be approximately 19,555 square feet. The proposed project would consist of a four-story hotel with on-site landscaping and guest amenities, and 113 on-site surface parking spaces fronting Lawrence Way. Detailed project plans referenced in this document are included in Appendix A, Concept Design Plans, of this IS/MND.

Approval of the proposed project requires rezoning the site to Planned Development (P-D) that would facilitate redevelopment of the project site with a hotel use. The following provides a detailed description of the key project components.

3.2.1 REZONING

The proposed project includes a change from the existing A-S zoning district to a P-D zoning designation. The purpose of the P-D district is to allow flexibility in the City’s conventional zoning requirements that support innovative building techniques and site planning, while maintaining compliance with the adopted General Plan and applicable public health, safety and welfare standards. P-D zoning may be applied to any parcel within the city with the submittal of a complete application including a preliminary site plan and proposed land use regulations. The City Council will consider the Rezoning Application following a recommendation by the Planning Commission, and a review by the Design Review Commission. Upon approval of the P-D designation, the project site would be subject to the development standards stated in the application and final Design Review approval by the Design Review Commission.7

3.2.2 HOTEL

The proposed project site plan is shown on Figure 3-3. The proposed project would develop a four-story short-term-stay hotel with approximately 72,964 square feet of building area and up to 124 guest rooms. The ground (first) floor of the hotel would include the lobby, lounge, dining room, buffet space, bar, kitchen, two meeting rooms, fitness center, sales office, employee lounge, laundry room, offices, 10 guest rooms, and electrical, mechanical, and storage spaces, as well as access to the outdoor pool and hot tub.

4 The 35-foot maximum height permitted is consistent with the maximum height allowed under the Building Height Freeze Initiative of 1985, commonly known as ‘Measure A’.
5 The floor area ratio (FAR) is the ratio of the gross floor area of all buildings on a lot to the net lot area of the property.
6 City of Walnut Creek Municipal Code, Title 10, Zoning, Chapter 10-2.2.1002, Automobile Sales and Service District, Land Use Regulations.
7 City of Walnut Creek Municipal Code, Title 10, Zoning, Article 17, Planned Development District (P-D).
area. The outdoor pool and hot tub would be located adjacent to the northwest corner of the hotel, screened from the Lawrence Way frontage by a fence and landscaping. The second, third and fourth floors would each include thirty eight (38) guest rooms, storage and linen spaces, telecommunications room, and elevator lobby. Hotel meeting rooms would accommodate approximately 30 people each and are intended for small conference venues. Guest rooms would be structured as follows: 60 king bed rooms including 3 Americans with Disabilities Act (ADA)-compliant king beds, and 64 double queen rooms, including 4 ADA double queen beds. Floor plans are shown on Sheet Number (No.) DR2.1 through Sheet
HILTON GARDEN INN IS/MND
CITY OF WALNUT CREEK

PROJECT DESCRIPTION

Figure 3-3
Conceptual Site Plan
No. DR2.3 in Appendix A of this IS/MND. The proposed project includes a FAR\(^8\) of 0.76, and as shown on Figure 3-4, the overall building height, including any sign and design facades, would not exceed 35 feet to the top of the roof line from the existing lowest on-site grade, with up to 12 feet of additional height afforded for mechanical and other equipment, as permitted by the Zoning Ordinance. Perspective views of the site are shown on Sheet No. DR3.1 through Sheet No. DR3.2 in Appendix A of this IS/MND.

The project applicant estimates that the operation of the proposed hotel would generate approximately 17 employees, who would be on-site during three 8-hour shifts over a period of 24 hours. Between 12 to 14 employees would be on-site between the hours of 7:00 a.m. and 5:00 p.m., and between 1 and 3 employees would be on-site between 5:00 p.m. and 7:00 a.m. With an average of two guests per hotel room, the hotel could generate up to 248 guests at maximum capacity.

3.2.3 ACCESS AND CIRCULATION

As shown on Figure 3-3 above, project site access, including emergency vehicles and bicycles, would be provided from two existing driveways on Lawrence Way. The drive aisle would extend around the front of the building to the loading zone on the southwest portion of the project site.

Pedestrian facilities typically include sidewalks, crosswalks, pedestrian signal phases, curb ramps, curb extensions, and various streetscape amenities such as lighting, and benches. In general, a network of sidewalks, crosswalks, pedestrian signals, and curb ramps provide access for pedestrians in the vicinity of the proposed project site. Specifically, pedestrian access to the project site would be via a sidewalk on Lawrence Way.

There is a Class I\(^9\) facility that is part of the Iron Horse Trail bicycle network and runs on North California Boulevard. In the project vicinity Class III\(^10\) routes are signed along Ygnacio Valley Road south of the project site.\(^11\)

Transit access is provided by County Connection and BART. Several County Connection Routes are located within walking distance (i.e., ¼-mile) of the project site. The bus stops at North Main Street/Parkside Drive and North Civic Drive/Parkside Drive serve the project site. The routes that serve these bus stops are as follows:

- **Route 9** is a local route that operates between Diablo Valley College and the Walnut Creek BART station. The route operates weekdays from 5:50 a.m. to 10:10 p.m. at varying headways between 55 and 40 minutes.

\(^8\) The FAR is the ratio of the gross floor area of all buildings on a lot to the area of the lot.

\(^9\) Class I Multi-Use Path – a completely separated right-of-way for the exclusive use of bicycles and pedestrians with cross flows of motorized traffic minimized.

\(^10\) Class III Bike Route – signing only for shared use with motor vehicles within the same travel lane on a street or highway.

\(^11\) City of Walnut Creek Bicycle Master Plan, 2011. Existing and Proposed Bicycle Facilities.
West Elevation

East Elevation

North Elevation

South Elevation

- **Route 15** is a local route that operates between the Walnut Creek BART station and the Concord BART Station. It operates on weekdays from 5:45 a.m. to 6:40 p.m. with 65-minute headways.

- **Route 98X** is an express bus service that operates between the Martinez Amtrak Station and the Walnut Creek BART Station. The route operates on weekdays from 5:30 a.m. to 6:30 p.m. at 40-minute headways.

Two bicycles can be carried on most County Connection buses. Bike rack space is available on a first come, first served basis.

The Walnut Creek BART Station is located on the northwest corner of N. California Boulevard/Ygnacio Valley Road, approximately 0.70 miles southwest of the project site. The Station provides access to nearby counties and is a connection point for County Connection Routes 1, 2, 4, 5, 9, 15, 25, 92X, and 98X. Bicycles are allowed on BART.

As shown on Figure 3-3 above, solid waste and recycling receptacles would be provided at the southwest side of the hotel and would be accessible to the solid waste disposal service via the Lawrence Way access point.

3.2.4 PARKING

As shown on Figure 3-3 above, the proposed project would include 41,848 square feet for vehicular and bicycle parking at the street-level in front of and along the south side of the hotel. Within that area, the site would accommodate 113 vehicular parking spaces, including provisions for seven electric vehicle (EV) charging-capable (including two EV-accessible spaces), 11 car/vanpool electric vehicle (CVPE), and five ADA-compliant spaces. As shown on Figure 3-3, six short-term bicycle parking spaces would be located outside the pedestrian walkways and within 200 feet of the main hotel entrance. As shown on Sheet No. DR2.1 in Appendix A of this IS/MND, secured bicycle storage spaces would be located on level one of the proposed hotel.

3.2.5 LANDSCAPING

Approximately 27,640 square feet, or 28 percent of the project site, would be landscaped. As shown on Figure 3-5, landscaped areas would be provided around the perimeter of the hotel development, the front of the hotel entrance, the garden terrace pergola, and around the pool area. The proposed project would remove two of the existing 15 trees on the project site. The existing trees to be removed include one Callery Pear and one Siberian Elm tree, none of which is classified as a “highly protected species” in the City’s tree preservation ordinance.\(^\text{12}\) As shown on Figure 3-5, the proposed project would plant 57 trees as well as shrubs, grasses, and other groundcover. The proposed landscaping includes a variety of trees such as Marina strawberry, non-fruiting olive, Coast Live Oak, Drake Elm, Crape Myrtle, Callery Pear,

\[^{12}\text{Arborist Report: 470-490 Lawrence Way Walnut Creek, CA. Hort Science, Inc., November 8, 2017.}\]
PROJECT DESCRIPTION

Proposed Planting Palette

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>BOTANICAL NAME</th>
<th>COMMON NAME</th>
<th>PLUGGE</th>
<th>MODULE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pальма миллиарда</td>
<td>MILLION DOLLAR PALM</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Сосна африканская</td>
<td>AFRICAN PINE</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Буккала остролистная</td>
<td>BUCKEYE</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Дуб американский</td>
<td>AMERICAN OAK</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Эль-клерки</td>
<td>RYE-CLERK</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Proposed Tree Palette

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>BOTANICAL NAME</th>
<th>COMMON NAME</th>
<th>PLUGGE</th>
<th>MODULE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Дуб американский</td>
<td>AMERICAN OAK</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Эль-клерки</td>
<td>RYE-CLERK</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Буккала остролистная</td>
<td>BUCKEYE</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Сосна африканская</td>
<td>AFRICAN PINE</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Пальма миллиарда</td>
<td>MILLION DOLLAR PALM</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3-5
Preliminary Landscaping Plan
California Pepper, Keith Davey Chinese Pistache, Emerald Green Arborvitae, and Water Gum. The ground-level landscaping would be watered with an automated sprinkler and drip irrigation system.

3.2.6 Lighting

Figure 3-6 illustrates the photometric plan, which shows the lighting plan for the proposed project. The proposed plan would include exterior pole lighting along the Lawrence Way frontage of the site, as well as at the trash enclosure located at the far west portion of the site and around the pool area at the northeast portion of the project site. The source, intensity, and type of exterior lighting for the project site would be typical for orientation and safety needs. As shown on the figure, all on-site lighting would be low-level illumination and would be shielded to reduce light spill or glare.

3.2.7 Signage

The proposed project would include signage on three locations of the hotel building along the Lawrence Way frontage, oriented to the east, north and south. In addition, one monument sign is proposed along the southeast frontage.

3.2.8 Utilities

Figure 3-7 illustrates the preliminary grading plan, which shows the utility plan for the proposed project. The proposed utility infrastructure would connect to the existing water, sewer, storm drain system, natural gas and electricity network in the area, and would be served by an existing solid waste landfill.

3.2.8.1 Water Supply and Conservation

The project site is located within the East Bay Municipal Utilities District (EBMUD) service area. As shown on Figure 3-7, the proposed project would connect to the existing 6-inch water main beneath Lawrence Way for domestic and fire service use. Any new connections or replaced water lines would not encroach on previously undisturbed areas. The proposed project incorporates a number of features meant to conserve water used for on-site irrigation per City requirements. All shrub, ornamental grass, and groundcover planting beds will be irrigated with low volume water efficient spray heads and drip irrigation system. Sprinklers shall utilize matched precipitation, pressure compensating nozzles for maximum uniformity of distribution. Irrigation systems will be automatically controlled with smart-type control capabilities based on weather conditions and will have flow sensing capabilities designed to minimize water use. Three-inch minimum depth of fir or redwood bark mulch will be installed in all planting beds. Bio-infiltration areas will receive a 2-inch layer of organic compost.

13 City of Walnut Creek, April 4, 2006. *Walnut Creek 2025 General Plan EIR*, Utilities and Infrastructure, page 133.
14 City of Walnut Creek Municipal Code, Title 10, Planning and Zoning, Section 110-2.2.1003, Property Development Regulations, Part III, Article 11.

Figure 3-6
Photometric Plan

HILTON GARDEN INN IS/MND
CITY OF WALNUT CREEK

PROJECT DESCRIPTION

Figure 3-7
Preliminary Grading Plan
3.2.8.2 SANITARY SEWER SERVICE

The Central Contra Costa Sanitary District (CCCSD) provides wastewater collection and treatment service for Walnut Creek. Sanitary wastewater generated on the project site would be treated by the CCCSD’s wastewater treatment facility.15 As shown on Figure 3-8, the proposed project would connect to the existing 12-inch sewer system line beneath Lawrence Way. Any new connections or replaced sewer lines would not encroach on previously undisturbed areas.

3.2.8.3 SOLID WASTE SERVICES

Commercial solid waste is collected within the city by Republic Services, contracted through the Central Contra Costa Solid Waste Authority (CCCSWA).16 Walnut Creek’s commercial solid waste is taken to the Contra Costa Transfer and Recovery Facility in Martinez. Commercial recycling is voluntary in Contra Costa County, and the CCSWA has a commercial recycling permitting program whereby businesses may choose from a list of commercial recyclers.17 The proposed project will include one solid waste and recycling storage area located at the southwest corner of the proposed building.

Consistent with City requirements,18 the project would include a Waste Management Plan, which describes the estimated volume of reusable and recyclable construction and demolition debris and the vendor or facility proposed to collect or receive the diverted materials. As part of the Waste Management Plan procedures, within 30 days after the completion of the proposed project, the applicant would be required to submit a Waste Management Report as proof that the proposed project met the diversion requirements.19

3.2.8.4 OTHER UTILITIES

Gas and electricity would be supplied to the project site by Pacific Gas & Electric (PG&E) and telephone, cable television, and internet services would be supplied by various providers. As shown on Figure 3-7 above, the project would connect to the existing gas lines, electric vaults, cable and fiber optic lines beneath Lawrence Way.

16 City of Walnut Creek, April 4, 2006. Walnut Creek 2025 General Plan EIR, Utilities and Infrastructure, page 131.
17 City of Walnut Creek, April 4, 2006. Walnut Creek 2025 General Plan EIR, Utilities and Infrastructure, page 131.
18 City of Walnut Creek Municipal Code, Title 5, Sanitation and Health, Chapter 5-3.603, Submission of Waste Management Plan (WMP).
19 City of Walnut Creek Municipal Code, Title 5, Sanitation and Health, Chapter 5-3.603, Submission of Waste Management Report (WMR).
3.2.8.5 STORMWATER MANAGEMENT

As shown on Figure 3-8, the proposed project would connect to the City’s existing storm drain system via the 24-inch storm drain located on the property and a 24-inch storm drain located at the far north portion of the project site along Penniman Way. The pre-project impervious surface area consisted of the entire site (98,536 square feet). The proposed project would replace 68,466 square feet of existing impervious area, resulting in a decrease of impervious surfaces by 30,070 square feet. The proposed drainage includes an internal storm drain network that connects to 21 bioretention areas that total 3,404 square feet along the perimeter of the site and building entrance. Other stormwater design features include directing roof runoff onto vegetated areas, directing runoff from sidewalks, walkways, and patios onto vegetated areas, slotted retaining curbs and gutters that direct parking lot runoff to vegetated areas, and permeable pavers for surface parking spaces. Stormwater runoff generated at the site would be treated, filtered, and released gradually to the City’s storm drain system. The location and configuration of the proposed stormwater low impact development (LID) features are shown on Figure 3-8.

3.2.9 SITE PREPARATION AND CONSTRUCTION

3.2.9.1 SITE PREPARATION

Development of the proposed project would involve demolition of existing structures and removal of the hardscaped areas, prior to grading. The project site will undergo a remediation process, prior to construction of the hotel under the jurisdiction of the California Department of Toxic Substances Control (DTSC). Specifically, vapor intrusion mitigation is required to minimize the potential for volatile organic compounds (VOCs) in soil gas to migrate into a future building’s interior. As discussed in Chapter 4, Environmental Analysis, the Removal Action Work Plan describes remedial alternatives to mitigation for vapor intrusion. The selected alternatives are engineering and institutional controls, and include:
- Incorporation of an aerated floor with passive venting into the building’s design;
- Preparation of a Site Management Plan; and
- Placement of a Land Use Covenant on the property.

The proposed project construction would comprise up to 61,403 square feet for the hotel and surface parking, 9,870 square feet of paving and hardscape (e.g., curb, gutters, planters, seat walls, etc.), and 27,640 square feet of landscaping and other pervious surfaces. The estimated demolition and construction would take place over a period of approximately 17 months, which is anticipated to commence in September 2018, subject to regulatory approval.

After demolition of the buildings, parking lots, other hardscape, and landscaping would be removed. Demolition debris would be recycled, reused, or disposed of pursuant to a Construction & Demolition Waste Management Plan Agreement between the applicant and the City as required under City Municipal
Code Chapter 5-3.603.20, Debris to be hauled would include approximately 8,488 square feet of building demolition and 1,542 tons of asphalt; all debris would be recycled. To be conservative, it is estimated that a maximum of 1,000 cubic yards of soil would be exported; soil import is not anticipated to occur. Site preparation, including grading and utility trenches, would be in compliance with recommendations in the project geotechnical engineering report, which is included as Appendix C, Geotechnical Report, of this IS/MND.21

During demolition and construction, vehicle, equipment, and materials would be staged and stored on a portion of the project site. The construction site and staging areas would be clearly marked, and barriers would be installed to prevent disturbance and safety hazards. No staging would occur in the public right-of-way. A combination of on- and off-site parking facilities for construction workers would be identified during demolition, grading, and construction, and all work would be subject to a construction traffic control plan to be approved by the City. The demolition and construction phase would generate approximately 550 temporary jobs with approximately 10 to 50 workers on-site daily. Construction work hours would be consistent with City requirements.

3.3 REQUIRED APPROVALS

Development of the project would require the following entitlements from the City of Walnut Creek: 1) Zoning Amendment (Rezoning) to change the designation from A-S to P-D in order to accommodate the hotel use; 2) Design Review approval; and a 3) Tree Removal Permit. Ministerial permits will include a Site Development Plan (SDP). A Stormwater Pollution Prevention Plan would be included in the SDP. Development of the project would also be required to comply with Municipal Regional Permit requirements related to stormwater pollution prevention, as well as DTSC requirements related to remediation of potential hazardous materials located on-site. Construction of the project would require the appropriate Building Permits.

20 City of Walnut Creek Municipal Code, Title 5, Sanitation and Health, Chapter 5-3.603, Submission of Waste Management Plan (WMP).
21 Geotechnical Investigation, Hilton Garden Inn Hotel, 490 Lawrence Way, Walnut Creek, CA, Stevens Ferrone & Bailey, Project Number 795-1, September 5, 2017.
This page intentionally left blank.
4. Environmental Analysis and Findings

Tharaldson Hospitality Development, the project applicant (applicant), is proposing the Hilton Garden Inn (herein referred to as the “proposed project”). The proposed project would involve demolishing the existing two City-owned buildings and redeveloping the project site with a hotel development on 2.26 acres covering two parcels located at 470-490 Lawrence Way. The proposed project would consist of a four-story hotel with 124 guest rooms, 113 on-site parking spaces at grade, on-site guest amenities and landscaping. This chapter provides a description of the proposed project, including the location, setting, and characteristics of the project site, a construction schedule, and required permits and approvals. The environmental setting by topic area is included in Chapter 4, Environmental Checklist and Findings, of this Initial Study/Mitigated Negative Declaration (IS/MND).

4.1 Project Site Location and Site Characteristics

4.1.1 Regional and Local Location

The project site is located in the central portion of the City of Walnut Creek in Contra Costa County. Walnut Creek is bordered by the City of Concord to the north, unincorporated Contra Costa County to the east and south, and the City of Lafayette to the west. Regional access to the project site is provided via Interstate 680 (I-680), which is a six-lane freeway to the west of the project site. Access to the project site from I-680 is provided from the eastbound Ygnacio Valley Road exit and the westbound North Main Street exit. Local access to the project site is provided by Lawrence Way. The project site is located approximately 26 miles east of Oakland International Airport (OAK) via Interstate 880 (I-880) and California Highway 24 (CA-24). Buchanan Field Airport is located approximately 6 miles to the north of the project site. The project site is located 0.5 miles northeast of the Walnut Creek Bay Area Rapid Transit District (BART) station, and is 1 mile south of the Pleasant Hill Centre BART station1 (see Figure 3-1).

Discussion of Environmental Evaluation

Due to the proposed project’s location in an urbanized city setting, the project would not have a significant effect on Agriculture, Forestry, Biological or Mineral Resources. Maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency categorize land within Walnut Creek as Urban and Built-Up Land.2 In addition, according to 2006 mapping data from the

California Department of Forestry and Fire Protection, the city does not contain any woodland or forestland cover; the city does not contain land zoned for farmland or timberland production. Finally, the site is considered developed at a medium-high density. Consequently, there would be no impacts with regard to agriculture and forestry, or biological, resources. The project site is mapped in Mineral Resource Zone 1 (MRZ-1) by the California Geological Survey (CGS), indicating that there is little likelihood that significant mineral resources are present. Also, because the site has been developed and is not considered suitable for protection or conservation, there would be no impacts to mineral resources. For these reasons, these topics are not discussed further in this Initial Study.

Items identified in each section of the environmental checklist below are discussed following that section. Required mitigation measures are identified where necessary to reduce a projected impact to a level that is determined to be less than significant. All impacts were found to be less than significant or less than significant with mitigation.

I. AESTHETICS

Would the proposed project:

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation Incorporated</th>
<th>Less Than Significant</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Have a substantial adverse effect on a scenic vista?</td>
<td>☐</td>
<td>☑</td>
<td>☐</td>
</tr>
<tr>
<td>b) Substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a State scenic highway?</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>c) Substantially degrade the existing visual character or quality of the site and its surroundings?</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td>d) Create a new source of substantial light or glare that would adversely affect day or nighttime views in the area?</td>
<td>☐</td>
<td>☐</td>
<td>☑</td>
</tr>
</tbody>
</table>

EXISTING SITE CHARACTER

The project site is located in a highly urbanized setting in the central portion of the city. Prominent visual features of the regional landscape are described below, along with the visual and aesthetic character of

the project site. See Figure 3-2, in Chapter 3, Project Description, of this IS/MND for an aerial view of the project site and surrounding land uses.

The project site is located at the southwest corner of Lawrence Way and Penniman Way. Lawrence Way is a two-lane north-south roadway in a one-way configuration, with traffic running in a northbound direction and Penniman Way is a two-lane east-west roadway connecting North Main Street and Lawrence Way and an on-ramp for northbound I-680. The project site is located between car dealer parking to the south and commercial buildings to the west, Lawrence Way and BART tracks to the east, and Penniman Way and I-680 to the north. Nearby land uses include auto dealerships, hotel and fast-food uses along Lawrence Way and North Main Street. The project site is bound by existing sidewalks on Lawrence Way and North Main Street. The Lawrence Way/North Main Street intersection is un-signalized with pedestrian crosswalks (see Figure 3-2).

As shown on Figure 3-2, the project site includes two parcels, covering a total area of 2.26 acres, and is currently developed with surface parking and two structures, which are currently occupied and used for City administrative purposes. Additionally, the City temporarily leases approximately 12,000 square feet, and nearby land uses include a variety of commercial uses along Lawrence Way in the southern portion of buildings of similar heights to those on the existing site.

The nearest state scenic highway to the project site is Highway 24 about 1.25 miles south of the project site. Walnut Creek is characterized by panoramic views of Mount Diablo, undeveloped hillsides, and urban views, which are common where there is a slight rise in elevation accompanied with breaks in trees or development. Within the vicinity of the project site, scenic corridors such as Oak Road/Civic Drive afford and North Main Street intermittent views to Mount Diablo and the hills in places where development does not block the vista. Scenic corridors are defined as having the following characteristics: 1) traveled by many people, 2) a unique orientation with expansive views and/or 3) notable for their landscaping and streetscape. The primary scenic views of Mount Diablo and the hills to the southeast are limited due to the elevated BART tracks adjacent to Lawrence Way. Existing light sources on and near the site include exterior building lights and street lights on Lawrence Way and I-680. There are no sources of substantial daytime glare on or near the project site; the exteriors of the commercial buildings on and next to the project site consist mostly of concrete and concrete block wall.

DISCUSSION

a) *Would the proposed project have a substantial adverse effect on a scenic vista?*

8 City of Walnut Creek, April 4, 2006. City of Walnut Creek General Plan 2025, Figure 17: Scenic Corridors and Views.
The proposed project would have a significant impact if it would have a substantial adverse effect on any significant views or scenic corridors identified in General Plan 2025. The maximum elevation of the project site is approximately 133 feet, with the highest point of the proposed hotel reaching an elevation of approximately 180 feet. The scenic views of Mount Diablo are from locations at elevations of 300 feet or higher, and would therefore not be applicable to the proposed project. The proposed project would be consistent with the required height limit of 85 feet designated in the 2025 General Plan and Walnut Creek Municipal Code that are established to preserve and enhance notable view corridors. Further, the proposed project would include landscaping in accordance with the City of Walnut Creek Municipal Code Title 10, Chapter 4. Accordingly, the development of the proposed project would not adversely affect a scenic vista and impacts would be less than significant.

b) Would the proposed project substantially damage scenic resources, including, but not limited to, trees, rock outcappings, and historic buildings within a State scenic highway?

The nearest state scenic highway to the project site is Highway 24 about 1¼ miles south of the project site. Therefore, development of the proposed project would not damage scenic resources within a State scenic highway and no impact would occur.

c) Would the proposed project substantially degrade the existing visual character or quality of the site and its surroundings?

While development of the proposed project would represent a change to the existing visual character of the project site from the existing two-story warehouse style buildings and surface parking to a four-story structure and associated parking, amenities and landscaping, the proposed project would be consistent with the overall urban character within surrounding area. Specifically, the proposed project would be visible principally from Main Street, Penniman Way, and Lawrence Way, and would include visual buffers; landscaping and trees to enhance the surroundings; and screen utilities facilities. The hotel would be constructed using building materials that include wood, glass, fiber-cement siding, and stucco in earth tones. The design of the proposed project would also be subject to review by the City’s Design Review Board to ensure consistency with the City’s Design Review Guidelines. Therefore, development of the proposed project would not substantially degrade the visual quality of the site or its surroundings and associated impacts would be less than significant.

d) Would the proposed project create a new source of substantial light or glare that would adversely affect day or nighttime views in the area?

With development of the proposed project, existing sources of light associated with the existing buildings would be replaced with new sources of interior and exterior lighting. Exterior lighting provided on and around the hotel building would largely be contained under the roofs of the proposed structures. In the walkways and common areas, lighting would meet or exceed levels needed to assure adequate

9 City of Walnut Creek, April 4, 2006. Walnut Creek 2025 General Plan. Chapter 4, Built Environment, page 4-24.
orientation and safety. Lights near the property line of the project site would be directed so as to minimize any spill-over lighting to the maximum extent practicable. In landscaped and paved areas, light sources would be concealed and not visible from a public viewpoint. All exterior surface and above-ground mounted fixtures would be sympathetic and complementary to the architectural theme. The nearest land uses sensitive to spill light are residences about 260 feet away from the project site east of Lawrence Way and Jones Road, separated by elevated BART tracks. Exterior lights for safety, security, and building illumination would not create substantial spill light at that distance and grade separation. The nearest travel lanes on I-680 are about 670 feet north of the proposed building; proposed lighting would not adversely affect nighttime views as seen from Interstate (I-) 680. Overall, interior and exterior lighting provided by the proposed project would be consistent with the urbanized context of the project site and would not be considered substantial. Therefore, associated impacts would be less than significant.

The building exterior would consist of low-glare materials; the proposed project would not create substantial glare such that could degrade daytime or nighttime views or pose a hazard to drivers on nearby roadways. The perimeter of the project site would be planted with trees which would further screen the buildings and reduce glare. Overall, the proposed project would not contribute to substantially increased glare and the impact would be less than significant.

II. AIR QUALITY

<table>
<thead>
<tr>
<th>Would the proposed project:</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation Incorporated</th>
<th>Less Than Significant</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Conflict with or obstruct implementation of the applicable air quality plan?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>b) Violate any air quality standard or contribute substantially to an existing or projected air quality violation?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>c) Result in a cumulatively considerable net increase of any criteria pollutant for which the project area is in non-attainment under applicable federal or State ambient air quality standards (including releasing emissions which exceed quantitative Standards for ozone precursors or other pollutants)?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>d) Expose sensitive receptors to substantial pollutant concentrations?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>e) Create objectionable odors affecting a substantial number of people?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>
EXISTING CONDITIONS

The air quality regulatory setting, meteorological conditions, existing ambient air quality in the vicinity of the project site, and air quality modeling is in Appendix B, Air Quality and Greenhouse Gas Emissions Data, of this IS/MND.

California is divided geographically into air basins for the purpose of managing the air resources of the State on a regional basis. An air basin generally has similar meteorological and geographic conditions throughout. San Carlos is in the San Francisco Bay Area Air Basin (SFBAAB or Air Basin), which comprises all of Alameda, Contra Costa, Marin, Napa, San Francisco, San Mateo, and Santa Clara counties; the southern portion of Sonoma County; and the southwestern portion of Solano County. The Bay Area Air Quality Management District (BAAQMD) is the regional air quality agency for the SFBAAB. Air quality in this area is determined by such natural factors as topography, meteorology, and climate, in addition to the presence of existing air pollution sources and ambient conditions. Federal, State, and local air districts have adopted laws and regulations intended to control and improve air quality. Air pollutants of concern are criteria air pollutants and toxic air contaminants (TACs).

- Criteria Air Pollutants. The pollutants emitted into the ambient air by stationary and mobile sources are regulated by federal and State law under the National and California Clean Air Act, respectively. Air pollutants are categorized as primary and/or secondary pollutants. Primary air pollutants are those that are emitted directly from sources. Carbon monoxide (CO), reactive organic gases (ROG) (also referred to as volatile organic compounds [VOC]), nitrogen dioxides (NO₂), sulfur dioxide (SO₂), coarse inhalable particulate matter (PM₁₀), fine inhalable particulate matter (PM₂.₅), and lead (Pb) are primary air pollutants. Of these, all of them except for ROGs are “criteria air pollutants,” which means that ambient air quality standards (AAQS) have been established for them. The National and California AAQS are the levels of air quality considered to provide a margin of safety in the protection of the public health and welfare. They are designed to protect those “sensitive receptors” most susceptible to further respiratory distress, such as asthmatics, the elderly, very young children, people already weakened by other disease or illness, and persons engaged in strenuous work or exercise. Healthy adults can tolerate occasional exposure to air pollutant concentrations considerably above these minimum standards before adverse effects are observed.

- Toxic Air Contaminants. In addition to criteria air pollutants, both the State and federal government regulate the release of Toxic Air Contaminants (TACs). The California Health and Safety Code define a TAC as “an air pollutant which may cause or contribute to an increase in mortality or in serious illness, or which may pose a present or potential hazard to human health.” A substance that is listed as a hazardous air pollutant pursuant to Section 112(b) of the federal Clean Air Act (42 United States Code Section7412[b]) is a toxic air contaminant. Under State law, the California Environmental Protection
Agency (Cal/EPA), acting through the California Air Resources Board (CARB), is authorized to identify a substance as a TAC if it determines that the substance is an air pollutant that may cause or contribute to an increase in mortality or serious illness, or may pose a present or potential hazard to human health.

Where available, the significance criteria established by BAAQMD may be relied upon to make the following determinations:

Discussion

a) **Would the project conflict with or obstruct implementation of the applicable air quality plan?**

BAAQMD is directly responsible for reducing emissions from area, stationary, and mobile sources in the SFBAAB to achieve National and California AAQS. In April of 2017 BAAQMD adopted its 2017 Clean Air Plan, which is a regional and multiagency effort to reduce air pollution in the Air Basin. A consistency determination with the AQMP plays an important role in local agency project review by linking local planning and individual projects to the Clean Air Plan. It fulfills the CEQA goal of informing decision makers of the environmental efforts of the project under consideration early enough to ensure that air quality concerns are fully addressed. It also provides the local agency with ongoing information as to whether they are contributing to the clean air goals in the Clean Air Plan.

The regional emissions inventory for the SFBAAB is compiled by BAAQMD. Regional population, housing, and employment projections developed by the Association of Bay Area Governments (ABAG) are based, in part, on cities’ general plan land use designations. These projections form the foundation for the emissions inventory of the Clean Air Plan. These demographic trends are incorporated into Plan Bay Area, compiled by ABAG and the Metropolitan Transportation Commission (MTC) to determine priority transportation projects and vehicle miles traveled in the Bay Area. The Clean Air Plan strategy is based on projections from local general plans. Projects that are consistent with the local general plan are considered consistent with the air quality-related regional plan. Large projects that exceed regional employment, population, and housing planning projections have the potential to be inconsistent with the regional inventory compiled as part of the 2017 Clean Air Plan.

The proposed project would develop 124 hotel rooms. Thus, it is not considered a regionally significant project that would affect regional vehicle miles traveled and warrant Intergovernmental Review by Metropolitan Transportation Commission’s (MTC) pursuant to the CEQA Guidelines Section 15206(b)(2)(D) because it would develop less than 500 hotel rooms. In addition, as the proposed project only involves development of a hotel, it would not result in the increase of population or housing foreseen in City or regional planning efforts. Likewise, the estimated 17 jobs generated by project operation would be well within forecast employment increases in Walnut Creek. Therefore, the proposed project would not have the potential to substantially affect housing, employment, and population projections within the region, which is the basis of the Clean Air Plan projections. Furthermore, as described in Section 4.2 (II)(b), regional operation of the proposed project would fall below BAAQMD’s screening threshold for a hotel,
and would not contribute to an existing air quality violation. These thresholds are established to identify projects that have the potential to generate a substantial amount of criteria air pollutants. Because the proposed project would not exceed these thresholds, the proposed project would not be considered by the BAAQMD to be a substantial emitter of criteria air pollutants. Therefore, the project would not conflict with or obstruct implementation of the 2017 Clean Air Plan, and impacts would be considered less than significant.

b) Violate any air quality standard or contribute substantially to an existing or projected air quality violation?

BAAQMD has identified thresholds of significance for criteria pollutant emissions and criteria air pollutant precursors, including ROG, NOx, PM_{10}, and PM_{2.5}. Development projects below the significance thresholds are not expected to generate sufficient criteria pollutant emissions to violate any air quality standard or contribute substantially to an existing or projected air quality violation. The following describes changes in regional impacts from short-term construction activities and long-term operation of the proposed project.

Construction Emissions

Construction activities produce combustion emissions from various sources, such as on-site heavy-duty construction vehicles, vehicles hauling materials to and from the site, and motor vehicles transporting the construction crew. Site preparation activities produce fugitive dust emissions (PM_{10} and PM_{2.5}) from demolition and soil-disturbing activities, such as grading and excavation. Air pollutant emissions from construction activities on site would vary daily as construction activity levels change. Construction activities associated with the proposed project would result in emissions of reactive organic gases (ROG), oxides of nitrogen (NOx), CO, PM_{10}, and PM_{2.5}.

The proposed project would result in overlapping construction subphases and substantial demolition debris and soil export that would occur proximate to existing sensitive land uses to the east across Jones Road, approximately 260 feet from the edge of the project site. Thus, the BAAQMD screening criteria for construction-related impacts would not be met and a quantified analysis of the proposed project’s construction emissions was conducted using CalEEMod based on information available.

Fugitive Dust

Ground-disturbing activities would generate fugitive dust. Fugitive dust emissions (PM_{10} and PM_{2.5}) are considered to be significant unless the project implements the BAAQMD’s Best Management Practices (BMPs) for fugitive dust control during construction. Fugitive PM_{10} is typically the most significant source of air pollution from the dust generated from construction. The amount of dust generated during construction would be highly variable and is dependent on the amount of material being demolished, the type of material, moisture content, and meteorological conditions. If uncontrolled, PM_{10} and PM_{2.5} levels downwind of actively disturbed areas could possibly exceed State standards. Consequently, construction-related criteria pollutant emissions are potentially significant in the absence of BAAQMD’s BMPs for fugitive dust control.
During construction of the project, construction activities would generate fugitive dust during ground-disturbing activities as well as substantial construction-related exhaust emissions from on-site construction equipment and on-road vehicle trips that could exceed the BAAQMD significance thresholds. Mitigation Measure AQ-1 would require adherence to the current BAAQMD’s basic control measures for reducing construction emissions of PM. Incorporation of Mitigation Measure AQ-1 would ensure impacts from fugitive dust generated during construction activities are less than significant.

Mitigation Measure AQ-1: The Applicant shall require their construction contractor to comply with the following BAAQMD Best Management Practices for reducing construction emissions of PM10 and PM2.5:

- Water all active construction areas at least twice daily or as often as needed to control dust emissions. Watering should be sufficient to prevent airborne dust from leaving the site. Increased watering frequency may be necessary whenever wind speeds exceed 15 miles per hour. Reclaimed water should be used whenever possible.
- Pave, apply water twice daily or as often as necessary to control dust, or apply (non-toxic) soil stabilizers on all unpaved access roads, parking areas, and staging areas at construction sites.
- Cover all trucks hauling soil, sand, and other loose materials or require all trucks to maintain at least 2 feet of freeboard (i.e., the minimum required space between the top of the load and the top of the trailer).
- Sweep daily (with water sweepers using reclaimed water if possible) or as often as needed all paved access roads, parking areas, and staging areas at the construction site to control dust.
- Sweep public streets daily (with water sweepers using reclaimed water if possible) in the vicinity of the project site, or as often as needed, to keep streets free of visible soil material.
- Hydro-seed or apply non-toxic soil stabilizers to inactive construction areas.
- Enclose, cover, water twice daily, or apply non-toxic soil binders to exposed stockpiles (e.g., dirt, sand).
- Limit vehicle traffic speeds on unpaved roads to 15 mph.
- Replant vegetation in disturbed areas as quickly as possible.
- Install sandbags or other erosion control measures to prevent silt runoff from public roadways.

The City of Walnut Creek or their designee shall verify compliance that these measures have been implemented during normal construction site inspections.

Construction Exhaust Emissions

Construction emissions are based on the preliminary construction schedule developed for the proposed project. The proposed project is estimated to take approximately 19 months to complete and is anticipated to be finished in the year 2020. To determine potential construction-related air quality
impacts, criteria air pollutants generated by project-related construction activities are compared to the BAAQMD significance thresholds. Average daily emissions are based on the annual construction emissions divided by the total number of active construction days. As shown in Table 4-1, criteria air pollutant emissions from construction equipment exhaust would not exceed the BAAQMD average daily thresholds. Therefore, construction-related criteria pollutant emissions from exhaust are less than significant.

As shown in Table 4-1, criteria air pollutant emissions from construction equipment exhaust would not exceed the BAAQMD average daily thresholds. Therefore, construction-related criteria pollutant emissions from exhaust are less than significant.

Operational Emissions

Long-term air pollutant emissions generated by a hotel project would also result in direct criteria air pollutant emissions from energy use, transportation, and area sources (e.g., consumer products, architectural coatings, and landscape equipment). Emissions of CO, VOCs, NOx, and SO2 are primarily emitted from the combustion of fossil fuels, gasoline, or diesel associated with motor vehicle usage and transportation. O3 is a secondary criteria air pollutant, which is formed when VOCs and NOx undergo
photochemical reactions in sunlight. Particulate emissions have several sources, including industrial, agricultural, construction, and transportation activities.

BAAQMD’s CEQA Guidelines identify screening criteria for operation-related criteria air pollutant emissions for hotels. Hotels with 489 rooms or more have the potential to generate a substantial increase in criteria air pollutant emissions and would need further analysis. The proposed project would develop up to 124 hotel units and would be below the BAAQMD screening threshold. Thus, it would generate nominal operational-related criteria air pollutant emissions. Furthermore, the proposed building would be more energy efficient than the existing structures onsite as it would be required to be constructed to achieve the 2016 Building and Energy Efficiency Standards. Therefore, operational phase criteria air pollutant emissions would be less than significant.

c) Result in a cumulatively considerable net increase of any criteria pollutant for which the project area is in non-attainment under applicable federal or State ambient air quality standards (including releasing emissions which exceed quantitative Standards for ozone precursors or other pollutants)?

This section analyzes potential impacts related to air quality that could occur from a combination of the proposed project with other past, present, and reasonably foreseeable projects within the Air Basin. The SFBAAB is currently designated a nonattainment area for California and National O₃, California and National PM₂.₅, and California PM₁₀ AAQS. Any project that produces a significant project-level regional air quality impact in an area that is in nonattainment adds to the cumulative impact. Due to the extent of the area potentially impacted from cumulative project emissions (the Air Basin), a project is cumulatively significant when project-related emissions exceed the BAAQMD emissions thresholds.

As described above in section (b), the proposed project would not have a significant long-term operational phase impact. However, as also discussed in section (b) above, without incorporation of fugitive dust control measures, construction activities associated with the proposed project could potentially result in significant regional short-term air quality impacts. Mitigation Measure AQ-1 would ensure that required fugitive dust control measures are implemented to control project-related fugitive dust generated during construction activities. Therefore, the project’s contribution to cumulative air quality impacts would be less than significant with mitigation.

d) Expose sensitive receptors to substantial pollutant concentrations?

Off-Site Community Risk and Hazards During Construction

The proposed project would elevate concentrations of TACs and PM₂.₅ in the vicinity of sensitive land uses during construction activities. The BAAQMD has developed Screening Tables for Air Toxics Evaluation During Construction that evaluate construction-related health risks associated with residential,
commercial, and industrial projects.\(^\text{12}\) According to the screening tables, construction activities occurring within 328 feet (100 meters)\(^\text{13}\) of sensitive receptors would result in potential health risks and warrant a health risk analysis. The nearest sensitive receptors to the project site are the multifamily residences across Jones Road, approximately 260 feet to the east. As this facility falls within the 328 feet (100 m) screening distance, project-related construction activities could result in any potential health risks impacts to the receptors at this location. Consequently, a full health risk assessment (HRA) of TACs and PM\(_{2.5}\) was prepared (see Appendix C).

Sources evaluated in the HRA include off-road construction equipment and heavy-duty diesel trucks along the truck route based on the 19-month construction duration and off-road equipment list provided by the Applicant. The EPA AERMOD air dispersion modeling program and the latest HRA guidance from OEHHA were used to estimate excess lifetime cancer risks, chronic noncancer hazard indices, and the PM\(_{2.5}\) maximum annual concentrations at the nearest sensitive receptors. Results of the analysis are shown in Table 4-2.

<table>
<thead>
<tr>
<th>Receptor</th>
<th>Project Level Risk</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cancer Risk (per million)</td>
<td>Chronic Hazards</td>
<td>PM(_{2.5}) (µg/m(^3))(^\text{a})</td>
</tr>
<tr>
<td>Maximum Exposed Off-Site Resident</td>
<td>14.6</td>
<td>0.033</td>
<td>0.09</td>
</tr>
<tr>
<td>Threshold</td>
<td>10</td>
<td>1.0</td>
<td>0.3 µg/m(^3)</td>
</tr>
</tbody>
</table>

Exceeds Threshold | Yes | No | No

Note: Cancer risk calculated using 2015 OEHHA HRA guidance.
\(^{a}\) From year 2019 which represents the highest maximum annual PM\(_{2.5}\) concentration.
Source: PlaceWorks, 2018.

The results of the HRA are based on the maximum exposed receptor concentration over a 19-month construction exposure period for off-site receptors, assuming 24-hour outdoor exposure, and averaged over a 70-year lifetime. Cancer risk for the maximum exposed receptor (MER), i.e. multifamily residences, from project-related construction emissions was calculated to be 14.6 in a million, which would exceed the 10 in a million significance threshold. For noncarcinogenic effects, the hazard index identified for each toxicological endpoint totaled less than one for off-site sensitive receptors. Therefore, chronic noncarcinogenic hazards are within acceptable limits. Similarly, the highest PM\(_{2.5}\) annual concentration would not exceed the BAAQMD significance threshold of 0.3 micrograms per cubic meter (µg/m\(^3\)). Consequently, the project could expose sensitive receptors to substantial concentrations of air pollutant emissions during construction, and impacts would be potentially significant without mitigation.

Mitigation Measure AQ-2: During construction, the construction contractor(s) shall use construction equipment fitted with Level 2 Diesel Particulate Filters (DPF) or higher for all equipment over 50 horsepower. The construction contractor shall maintain a list of all operating equipment in use on the project site for verification by the City of Walnut Creek Building Division official or his/her designee. The construction equipment list shall state the makes, models, and number of construction equipment on-site. Equipment shall be properly serviced and maintained in accordance with manufacturer recommendations. The construction contractor shall ensure that all non-essential idling of construction equipment is restricted to five minutes or less in compliance with California Air Resources Board Rule 2449. Prior to issuance of any construction permit, the construction contractor shall ensure that all construction plans submitted to the City of Walnut Creek Planning Division and/or Building Division clearly show the requirement for Level 2 DPF or higher emissions standards for construction equipment over 50 horsepower.

Cancer risk for the maximum exposed off-site resident would exceed BAAQMD’s significance thresholds due to construction activities associated with the proposed project. However, Mitigation Measure AQ-2 requires using construction equipment fitted with Level 2 Diesel Particulate Filters (DPF), which would reduce the project’s localized construction emissions. The mitigated health risk values were calculated and are summarized in Table 4-3. As shown in the table, incorporation of mitigation would reduce cancer risk at the maximum exposed receptor to 8.6 in a million, which would be below the BAAQMD’s significance threshold. Therefore, the project would not expose sensitive receptors to substantial concentrations of air pollutant emissions during construction and impacts would be less than significant with mitigation.

<table>
<thead>
<tr>
<th>Receptor</th>
<th>Cancer Risk (per million)</th>
<th>Chronic Hazards</th>
<th>PM$_{2.5}$ ($\mu g/m^3$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Exposed Receptor – Residences</td>
<td>8.6</td>
<td>0.019</td>
<td>0.05</td>
</tr>
<tr>
<td>BAAQMD Threshold</td>
<td>10</td>
<td>1.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Exceeds Threshold?</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Notes: Cancer risk calculated using 2015 OEHHA HRA guidance.
Risks incorporate Mitigation Measure AQ-2, which includes using construction equipment with Level 2 Diesel Particulate Filters for equipment over 50 horsepower.
a. From year 2019 which represents the highest maximum annual PM$_{2.5}$ concentration.

CO Hotspots

Areas of vehicle congestion have the potential to create pockets of CO called hotspots. These pockets have the potential to exceed the State one-hour standard of 20 parts per million (ppm) or the eight-hour standard of 9.0 ppm. Because CO is produced in the greatest quantities from vehicle combustion and does not readily disperse into the atmosphere, adherence to ambient air quality standards is typically demonstrated through an analysis of localized CO concentrations. Hotspots are typically produced at
intersections, where traffic congestion is highest because vehicles queue for longer periods and are subject to reduced speeds. The proposed project would generate up to approximately 74 peak hour trips. The proposed project would not exceed BAAQMD screening criteria by increasing traffic volumes at affected intersections by more than 44,000 vehicles per hour or 24,000 vehicles per hour where vertical and/or horizontal mixing is substantially limited. Thus, localized air quality impacts related to mobile-source emissions would therefore be less than significant.

e) Create objectionable odors affecting a substantial number of people?

The following evaluates potential odor impacts from operation and construction of the proposed project.

Operation

The type of facilities that are considered to have objectionable odors from their operation include wastewater treatments plants, compost facilities, landfills, solid waste transfer stations, fiberglass manufacturing facilities, paint/coating operations (e.g., auto body shops), dairy farms, petroleum refineries, asphalt batch plants, chemical manufacturing, and food manufacturing facilities. Hotels are not associated with the aforementioned types of land uses that could generate foul odors that constitute a public nuisance. During operation, the proposed project could generate odors from cooking. Odors from cooking are not substantial enough to be considered nuisance odors that would affect a substantial number of people. Furthermore, nuisance odors are regulated under BAAQMD Regulation 7, Odorous Substances, which requires abatement of any nuisance generating an odor complaint. BAAQMD’s Regulation 7, Odorous Substances, places general limitations on odorous substances and specific emission limitations on certain odorous compounds. In addition, odors are also regulated under BAAQMD Regulation 1, Rule 1-301, Public Nuisance, which states that “no person shall discharge from any source whatsoever such quantities of air contaminants or other material which cause injury, detriment, nuisance or annoyance to any considerable number of persons or the public; or which endangers the comfort, repose, health or safety of any such persons or the public, or which causes, or has a natural tendency to cause, injury or damage to business or property.” Overall, odor impacts from operation of the proposed hotel are considered less than significant.

Construction

During construction activities, construction equipment exhaust and application of asphalt and architectural coatings would temporarily generate odors. Any construction-related odor emissions would be temporary and intermittent. Additionally, noxious odors would be confined to the immediate vicinity of the construction equipment. By the time such emissions reach any sensitive receptor sites, they would be

15 It should be noted that while restaurants can generate odors, these sources are not identified by BAAQMD as nuisance odors since they typically do not generate significant odors that affect a substantial number of people. Larger restaurants that employ five or more people are subject to BAAQMD Regulation 7, Odorous Substances.
diluted to well below any level of air quality concern. Odor impacts from construction activities would be *less than significant*.

III. CULTURAL RESOURCES

<table>
<thead>
<tr>
<th>Would the proposed project:</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation Incorporated</th>
<th>Less Than Significant</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Cause a substantial adverse change in the significance of a historical resource as defined in Section 15064.5?</td>
<td>☐</td>
<td>☐</td>
<td>■</td>
<td>☐</td>
</tr>
<tr>
<td>b) Cause a substantial adverse change in the significance of an archaeological resource pursuant to Section 15064.5?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>c) Directly or indirectly destroy a unique paleontological resource or site or unique geologic feature?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>d) Disturb any human remains, including those interred outside of dedicated cemeteries?</td>
<td>☐</td>
<td>☐</td>
<td>■</td>
<td>☐</td>
</tr>
</tbody>
</table>

EXISTING CONDITIONS

The first known human inhabitants of the Walnut Creek area were the Bay Miwok. The Miwok occupied the interior valleys of the East Bay and may have included the bayshore area in the present East Oakland area, which lies in part of the city’s Planning Area. This ethnographic group settled in large permanent groupings of households, forming large villages and tribal territories known as ‘tribelets.’ A records and literature search was performed at the Northwest Information Center of the California Historical Resources Information System, which revealed that 15 prehistoric cultural resource sites have been recorded (with another two sites identified, but not officially recorded) within Walnut Creek. Prehistoric archaeological resources in the Walnut Creek area include habitation sites, burial sites and burial mounds, lithic scatters, shell middens, shell and earth middens, bedrock mortars, and cupule boulders. Typically, these sites are located in stream valleys, including those of Walnut Creek, Las Trampas Creek, Tice Creek, and San Ramon Creek. The locations of these archaeological sites are recorded by the California Historical Resources Information System, but are kept confidential to prevent looting or vandalism of the sites. Further, the project site is located with an area designated as having “high sensitivity” with respect to Native American resources.

16 City of Walnut Creek, April 4, 2006. *Walnut Creek 2025 General Plan EIR*, Chapter 4.7, Cultural Resources, page 160.
17 City of Walnut Creek, April 4, 2006. *Walnut Creek 2025 General Plan EIR*, Chapter 4.7, Cultural Resources, page 161.
18 City of Walnut Creek, April 4, 2006. *Walnut Creek 2025 General Plan*, Figure 17, Archaeologically Sensitive Areas.
ENVIRONMENTAL ANALYSIS AND FINDINGS

The existing buildings on-site were built between 1946 and 1958 based on review of historical data obtained through Environmental Data Resources (EDR) and various agencies. The National Register of Historic Places includes buildings at least 50 years old, unless deemed to be of exceptional importance. The Office of Historic Preservation (OHP) includes buildings, structures and objects 45 years or older on the California Register. The National and California Register contain 45 properties of historic significance in the City of Walnut Creek; none are located on the project site. The City of Walnut Creek maintains a listing of 352 properties that are potentially historic. The closest potentially historic-designated structure is located approximately 0.3 miles south of the project site. No resources listed on the City’s Historical Resources Inventory are in the project site.

Paleontological resources (fossils) are the remains and/or traces of prehistoric plant and animal life exclusive of human remains or artifacts. Fossil remains such as bones, teeth, shells, and wood are found in the geologic deposits (rock formations) in which they were originally buried. Paleontological resources represent a limited, non-renewable, sensitive scientific and educational resource. The potential for fossil remains at a location can be predicted through previous correlations that have been established between the fossil occurrence and the geologic formations within which they are buried. For this reason, knowledge of the geology of a particular area and the paleontological resource sensitivity of particular rock formations, make it possible to predict where fossils will or will not be encountered.

DISCUSSION

a) Would the project cause a substantial adverse change in the significance of a historical resource as defined in Section 15064.5?

The types of cultural resources that meet the definition of historical resources under Public Resources Code Section 21084.146 generally consist of districts, sites, buildings, structures, and objects that are significant for their traditional, cultural, and/or historical associations. Under CEQA, both prehistoric and historic-period archaeological sites may qualify based on historical associations. As such, the two main historical resources that are subject to impact, and that may be impacted by development allowed under the proposed project, are historical archaeological deposits and historical architectural resources. Impacts to archaeological impacts are discussed under Criterion (b) below.

19 Site Investigation Work Plan: 470, 480, 490 Lawrence Way Properties Walnut Creek, California. The Source Group, June 29, 2015, page 2-3.
21 City of Walnut Creek, April 4, 2006. Walnut Creek 2025 General Plan EIR, Figure 19, Potentially Historic Sites in the Walnut Creek Core Area.
22 City of Walnut Creek, April 4, 2006. Walnut Creek 2025 General Plan EIR, Chapter 4.7, Cultural Resources, page 163.
23 California Code of Regulations (CCR), Title 14, Chapter 3, Section 15064.5(c), Determining the Significance of Impacts on Historical and Unique Archaeological Resources.
The Federal, State, and City historic registers do not indicate any historically or architecturally significant buildings designated within the project site. Therefore, demolition of the existing buildings on the project site would not affect any historic resources and no impact would occur.

b) Would the project cause a substantial adverse change in the significance of an archaeological resource pursuant to Section 15064.5?

The closest source of fresh water to the project site is Walnut Creek which is located less than ½-mile east. The project area would have been moderately well situated for prehistoric occupants of the region to live or gather resources. As the project site has already been significantly disturbed due to existing development, and no prehistoric or historic resources including ethnographic villages or camps have been discovered or recorded at the project site to date, it is possible that unknown archaeological deposits associated with historic periods of Contra Costa County history or unrecorded Native American prehistoric archaeological sites exist in the project site, including those that are buried under soils. If such historical archaeological deposits meet the definition of historical resource under Public Resources Code Section 21084.1 are damaged or destroyed by ground-disturbing construction activities (e.g., site preparation, grading, excavation, and trenching for utilities) associated with development allowed under the proposed project, the ability of the deposits to convey their significance, either as containing information about prehistory or history, or as possessing traditional or cultural significance to Native American or other descendant communities, would be materially impaired.

Several existing regulations would help to ensure that development and redevelopment activities allowed under the proposed project do not cause a substantial adverse change. The Walnut Creek General Plan includes policies that would address impacts to historical and pre-contact archaeological deposits. Land Use Element Policy 24.1 would require review of the potential for the presence of archaeological and paleontological resources and remains in or near identified archaeological sites. Although no known resources exist with the project site and existing regulations and policies would protect historically significant structures and structures that have been officially designated as being historically significant, it is possible that cultural resources could exist within the project site. Therefore, ground-disturbing activities associated with development under the proposed project would have the potential to uncover and damage or destroy unknown resources. With implementation of Mitigation Measure CULT-1, impacts would be less than significant.

Mitigation Measure CULT-1: If any prehistoric or historic subsurface cultural resources are discovered during ground-disturbing activities, all work within 50 feet of the resources shall be halted and a qualified archaeologist shall be consulted to assess the significance of the find according to CEQA Guidelines Section 15064.5. If any find is determined to be significant, representatives from the City and the archaeologist would meet to determine the appropriate avoidance measures or other appropriate mitigation. All significant cultural materials recovered shall be, as necessary and at the discretion of the consulting archaeologist, subject to scientific analysis, professional museum curation, and documentation according to current professional standards. In considering any suggested mitigation proposed by the consulting archaeologist to mitigate impacts to historical resources or
unique archaeological resources, the City shall determine whether avoidance is necessary and feasible in light of factors such as the nature of the find, proposed project design, costs, and other considerations. If avoidance is infeasible, other appropriate measures (e.g., data recovery) would be instituted. Work may proceed on other parts of the project site while mitigation for historical resources or unique archaeological resources is being carried out.

c) Would the project directly or indirectly destroy a unique paleontological resource or site or unique geologic feature?

The project contains no unique geological features; although no known paleontological resources have been recorded within the project site, there could be fossils of potential scientific significance and other unique geologic features that are not recorded. It is possible that ground-disturbing construction associated with development under the proposed project could reach significant depths below the ground surface. Should this occur, damage to, or destruction of, paleontological resources or unique geologic features could result. As such, ground-disturbing activities associated with development under the proposed project would have the potential to uncover and adversely affect unknown resources. With implementation of Mitigation Measure CULT-2, impacts would be less than significant.

Mitigation CULT-2: In the event that fossils or fossil-bearing deposits are discovered during construction, excavations within 50 feet of the find shall be temporarily halted or diverted. The contractor shall notify a qualified paleontologist to examine the discovery. The paleontologist shall document the discovery as needed, in accordance with Society of Vertebrate Paleontology standards (Society of Vertebrate Paleontology 1995), evaluate the potential resource, and assess the significance of the find under the criteria set forth in CEQA Guidelines Section 15064.5. The paleontologist shall notify the appropriate agencies to determine procedures that would be followed before construction is allowed to resume at the location of the find. If the project proponent determines that avoidance is not feasible, the paleontologist shall prepare an excavation plan for mitigating the effect of the proposed project based on the qualities that make the resource important. The plan shall be submitted to the City for review and approval prior to implementation.

d) Would the project disturb any human remains, including those interred outside of formal cemeteries?

Human remains associated with pre-contact archaeological deposits may exist in the project site, as sometimes previously unrecorded human remains are encountered during development projects. The proposed project would allow new construction, and the associated ground-disturbing activities would have the potential to impact human remains. Descendant communities may ascribe religious or cultural significance to such remains, and may view their disturbance as an immittigable impact.

There could be human remains that are not recorded in the project site. Therefore, project ground-disturbing activities could uncover and adversely affect such remains. In the event of accidental discovery of human remains, site disturbance would halt and the project proponent would notify the Contra Costa County Coroner of such discovery pursuant to California Health and Safety Code Section 7050.5. This is a less than significant impact.
IV. TRIBAL CULTURAL RESOURCES

Would the proposed project:	Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less Than Significant	No Impact
a) Cause a substantial adverse change in the significance of a Tribal cultural resource, defined in Public Resources Code section 21074 as either a site, feature, place, cultural landscape that is geographically defined in terms of the size and scope of the landscape, sacred place, or object with cultural value to a California Native American Tribe, and that is:

- Listed or eligible for listing in the California Register of Historical Resources, or in a local register of historical resources as defined in Public Resources Code section 5020.1(k), or
- A resource determined by the lead agency, in its discretion and supported by substantial evidence, to be significant pursuant to criteria set forth in subdivision (c) of Public Resources Code Section 5024.1. In applying the criteria set forth in subdivision (c) of Public Resource Code Section 5024.1 for the purposes of this paragraph, the lead agency shall consider the significance of the resource to a California Native American tribe.

EXISTING CONDITIONS

Assembly Bill 52 (AB 52), which took effect on July 1, 2015, amends CEQA and adds standards of significance that relate to Native American consultation and certain types of cultural resources. Projects subject to AB 52 are those that file a notice of preparation for an EIR or notice of intent to adopt a negative or mitigated negative declaration on or after July 1, 2015. As of July 1, 2016, the Governor’s Office of Planning and Research (OPR) developed guidelines and the NAHC informed tribes which agencies are in their traditional area. In response to these guidelines, this Section IV, Tribal Cultural Resources, has been added as a stand-alone section to this IS/MND.

AB 52 requires the CEQA lead agency to begin consultation with a California Native American Tribe that is traditionally and culturally affiliated with the geographic area of the proposed project if the Tribe requests in writing, to be informed by the lead agency through formal notification of the proposed projects in the area. The consultation is required before the determination of whether a negative declaration, mitigated negative declaration, or EIR is required. In addition, AB 52 includes time limits for certain responses regarding consultation. AB 52 also adds “tribal cultural resources” (TCR) to the specific cultural resources
Information shared by tribes as a result of AB 52 consultation shall be documented in a confidential file, as necessary, and made part of a lead agencies administrative record. In response to AB 52, City of Walnut Creek has not received any request from any Tribes in the geographic area with which it is traditionally and culturally affiliated with or otherwise to be notified about projects in the City of Walnut Creek.

A TCR is defined under AB 52 as a site, feature, place, cultural landscape that is geographically defined in terms of size and scope, sacred place, and object with cultural value to a California Native American tribe that are either included or eligible for inclusion in the California Register of Historic Resources or included in a local register of historical resources, or if the City of Walnut Creek, acting as the lead agency, supported by substantial evidence, chooses at its discretion to treat the resource as a TCR.

DISCUSSION

a) Would the project cause a substantial adverse change in the significance of a Tribal cultural resource, defined in Public Resources Code section 21074 as either a site, feature, place, cultural landscape that is geographically defined in terms of size and scope of the landscape, sacred place, or object with cultural value to a California Native American Tribe, and that is:

- Listed or eligible for listing in the California Register of Historical Resources, or in a local register of historical resources as defined in Public Resources Code section 5020.1(k), or
- A resource determined by the lead agency, in its discretion and supported by substantial evidence, to be significant pursuant to criteria set forth in subdivision (c) of Public Resources Code Section 5024.1. In applying the criteria set forth in subdivision (c) of Public Resource Code Section 5024.1 for the purposes of this paragraph, the lead agency shall consider the significance of the resource to a California Native American tribe?

As discussed under Criteria (b) and (d) in Section III, Cultural Resources, no known archeological resources, ethnographic sites or Native American remains are located on the project site. As discussed under Criterion (b) in Section III, Cultural Resources, implementation of Mitigation Measure CULT-1 would reduce impacts to unknown archaeological deposits, including TCRs, to a less-than-significant level. As discussed under Criterion (d) in Section III, Cultural Resources, compliance with State and federal regulations would reduce the likelihood of disturbing or discovering human remains, including those of Native Americans. Therefore, implementation of Mitigation Measure CULT-1 and compliance with State and federal regulations related to the protection of human remains would reduce impacts to TCRs to a less-than-significant level.

Mitigation Measure TCR-1: Implement Mitigation Measure CULT-1.

24 CEQA Section 21074.
V. GEOLOGY AND SOILS

<table>
<thead>
<tr>
<th>Would the proposed project:</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation Incorporated</th>
<th>Less Than Significant</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Expose people or structures to potential substantial adverse effects, including the risk of loss, injury or death involving:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i) Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault?</td>
<td>☐</td>
<td>☐</td>
<td>□</td>
<td>☐</td>
</tr>
<tr>
<td>ii) Strong seismic ground shaking?</td>
<td>☐</td>
<td>☐</td>
<td>□</td>
<td>☐</td>
</tr>
<tr>
<td>iii) Seismic-related ground failure, including liquefaction?</td>
<td>☐</td>
<td>☐</td>
<td>□</td>
<td>☐</td>
</tr>
<tr>
<td>iv) Landslides, mudslides or other similar hazards?</td>
<td>☐</td>
<td>☐</td>
<td>□</td>
<td>☐</td>
</tr>
<tr>
<td>b) Result in substantial soil erosion or the loss of topsoil?</td>
<td>☐</td>
<td>☐</td>
<td>□</td>
<td>☐</td>
</tr>
<tr>
<td>c) Be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction, or collapse?</td>
<td>☐</td>
<td>☐</td>
<td>□</td>
<td>☐</td>
</tr>
<tr>
<td>d) Be located on expansive soil, creating substantial risks to life or property?</td>
<td>☐</td>
<td>☐</td>
<td>□</td>
<td>☐</td>
</tr>
<tr>
<td>e) Have soils incapable of adequately supporting the use of septic tanks or alternative waste water disposal systems where sewers are not available for the disposal of wastewater?</td>
<td>☐</td>
<td>☐</td>
<td>□</td>
<td>☐</td>
</tr>
</tbody>
</table>

EXISTING CONDITIONS

The following discussion is based in part on the information provided in the Geotechnical Investigation, Hilton Garden Inn Hotel, 490 Lawrence Way, Walnut Creek, CA, dated September 5, 2017, prepared by Stevens Ferrone and Bailey and reviewed by PlaceWorks’ Associate Geologist. This report is included in Appendix D, Geotechnical Report, of this IS/MND.

The project site and the surrounding parts of the City of Walnut Creek, California are located in the hummocky lobate hill terrain east of San Francisco Bay which is set within the larger Coast Ranges Geomorphic Province. This province is characterized by northwest-southeast trending mountain ranges that stretch from the Oregon border on the north to Point Conception on the south. In the San Francisco Bay area, most of the Coast Ranges are underlain by the tectonically complex, Jurassic- to Cretaceous-age
sedimentary and metamorphic bedrock of the Franciscan Complex. The topography in the immediate vicinity of the project site is nearly flat, with a very gentle slope to the northeast. Present-day elevations at the project site are in the vicinity of 123 to 134 feet above mean sea level. Stormwater runoff in the vicinity flows northeast towards Walnut Creek via curbs/gutters/storm drains. Based on geologic mapping by the US Geological Survey (USGS), the project site is underlain by early to middle Pleistocene-age alluvium (see Figure 4-1).25 As mentioned above, a detailed geotechnical investigation of the project site was recently performed, as documented in a report dated September 5, 2017.26 This investigation found that the roughly 2.3-acre site is generally blanketed by clayey fill materials that extend to depths of about 2.5 to 4.5 feet below the existing ground surface. Beneath this shallow fill horizon, the investigation encountered clay, then sand or gravel, and silt or clay to a maximum depth of 31 feet below ground surface (bgs). A former drainage was postulated by Stevens, Ferrone & Bailey on the southern portion of the site that may contain deeper fill materials. Groundwater was encountered at 20 feet bgs on the northern portion of the site and at 9.5 feet bgs surface in the central portion of the site.

The potential for seismicity in the vicinity is dominated by the nearby Concord Fault, whose main trace lies as close as 3.5 miles northeast of the project site. Other prominent earthquake faults in the San Francisco Bay Area include the Calaveras Fault which is approximately 6 miles to the south, the Hayward Fault that lies roughly 10 miles to the southwest, and the San Andreas Fault, whose trace passes as close as 28 miles southwest of the project site.27 No mapped earthquake faults pass through or lie adjacent to the project site.

Regional seismic shaking studies conducted by the US Geological Survey (USGS) and CGS show that the project site is located in an area with violent seismic shaking potential, equivalent to level IX on the Modified Mercalli Intensity scale (MMI).28 Furthermore, the USGS’ National Earthquake Hazards Reduction Program soil classification for the project site vicinity concluded that the underlying soil types would experience moderate amplification of seismic shaking (see Figure 4-2).29 Finally, the 2007 Working Group on California Earthquake Probabilities, a collaborative effort involving the CGS, Southern California Earthquake Center, and USGS, estimated that the 30-year probability of a magnitude 6.7 or greater earthquake striking the San Francisco Bay area was 63 percent.30

Approximate Project Site

Figure 4-1
Geologic Map
Approximate Project Site

- Historic Faults
- Holocene Faults
- Major Roads
- Roads

Figure 4-2
Soil Type and Shaking Hazard
It should be noted that in the event of a major earthquake, the degree of shaking would be subject to a number of variables, such as the magnitude of the event and the distance to the zone of rupture (i.e., hypocenter).

Liquefaction is the rapid transformation of saturated, fine-grained sediment to a fluid-like state due to seismic ground shaking. Liquefaction can damage foundations, disrupt utility service, and cause damage to roadways. The CGS has not yet published a liquefaction hazard map for the Walnut Creek 7.5-minute quadrangle, where the project site is located. Nevertheless, a 2000 USGS study of liquefaction hazard potential in the Central San Francisco Bay Area mapped the project site within a zone of “Very Low” liquefaction potential, where the susceptibility was rated based on the combined assessment of historical observations of liquefaction, geotechnical analyses of borehole data, and estimated depth to groundwater.31

A landslide is a mass of rock, soil, or debris that is displaced down a slope by sliding, flowing, or falling. Landslides can be a direct result of an earthquake, or can be caused by other natural events, such as heavy rainfall. Landslides can also be the result of human activities, such as grading or removal of vegetation. Although the CGS has not mapped seismically induced landslide hazard zones in the vicinity of the project site, the near flat topography and lack of steep slopes suggest that the potential for landslides is likely to be extremely low.

DISCUSSION

a) Would the project expose people or structures to potential substantial adverse effects, including the risk of loss, injury or death involving: (i) Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault; (ii) Strong seismic ground shaking; (iii) Seismic-related ground failure, including liquefaction; (iv) Landslides, mudslides or other similar hazards?

It must be noted that exposure of people or structures to seismic hazards is not a CEQA impact. According to a recent California Supreme Court decision, CEQA applies to a project’s impacts on the environment, not the environment’s impacts on the project unless the project would exacerbate the environmental hazard.32 Implementation of the project would not cause or worsen seismic activity. Therefore, the project would not exacerbate the seismic hazard. No further discussion of potential impacts a)(i), a)(ii), a)(iii), or a)(iv) is required. Liquefaction and landslides can be related to non-seismic conditions and they are addressed in Impact c) below.

32 California Supreme Court, 2015, California Building Industry Association v Bay Area Air Quality Management District, Opinion No. S213478, date filed: December 17, 2015.
b) Would the project result in substantial soil erosion or the loss of topsoil?

Construction of the proposed project will entail significant grading and building demolition to accommodate the proposed hotel and associated infrastructure. Such activities invariably carry some potential for soil erosion and/or loss of topsoil. A number of existing regulatory mechanisms are applicable to erosion control during construction. Some of these controls can be found in Walnut Creek Municipal Code Sections 9-9.07 (General Grading Regulations) and 9-9.08 (Specific Grading Regulations). These erosion control regulations prohibit abandonment of exposed slopes or graded areas without appropriate erosion controls. Compliance with these existing regulatory requirements would reduce potential impacts from substantial erosion and/or the loss of topsoil to a less-than-significant level.

c) Would the project be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction, or collapse?

As described above, the topography at the project site is nearly flat, ranging in elevation from 123 to 134 feet above mean sea level. In light of the topography and absence of significance of slopes on or near the project site, the potential for on- or off-site landslides is considered extremely low. The recent site-specific geotechnical investigation concluded that the potential for liquefaction at the project site was low based on the lack of saturated liquefiable soils.

Based on the dense lithology observed during the geotechnical investigation, subsidence potential at the project site is considered to be very low. Based on the flat topography and the lack of a “free-face” near the site, lateral spreading susceptibility at the site is considered to be low. Based on the presence of shallow groundwater and dense lithology observed during the geotechnical investigation, the potential for collapse at the project site is considered to be low. The impact with respect to project implementation regarding landslides, lateral spreading, subsidence, liquefaction or collapse would be less than significant.

d) Would the project be located on expansive soil, creating substantial risks to life or property?

A recent detailed geotechnical investigation was performed at the project site. The investigation included the drilling and sampling of five (5) exploratory soil borings, and the depths explored ranged from 6.5 to 31 feet bgs. Plasticity tests, using ASTM Method D4318, were performed on two representative soil samples from 2 feet in depth. The indicated that Plasticity Index for these samples was 7 and 36, and the geotechnical report concluded that the expansive potential of shallow soils ranges from “low” to “high.” Accordingly, the geotechnical report recommendations included measures to mitigate differential expansion. If these recommendations were not adhered to, project construction could result in significant adverse impacts with respect to expansive soils. However, with implementation of Mitigation

Measure GEO-1, the impact with respect to project implementation regarding differential expansion from expansive soils would be less than significant.

Mitigation Measure GEO-1: To mitigate the impact of proposed project implementation with respect to differential expansion, the relevant recommendations of the September 5, 2017 Stevens, Ferrone & Bailey Engineering Company, Inc. geotechnical report shall be followed. To mitigate the potential of differential expansion, the geotechnical investigation recommended grading be performed so that all building foundations and surrounding flatwork be supported on a moisture conditioned, well blended engineered fill layer at least 5 feet thick. The compacted, engineered fill layer shall be located below building foundations and surrounding flatwork and extend at least 5 feet beyond building footprints and at least 3 feet beyond exterior flatwork.

A geotechnical technician should be on-site during over-excavation and replacement to observe and test fill placement operations. A geotechnical improvement plan showing the approximate lateral extent and depth of the recommended over-excavations should be drafted according to the specifications above and followed during the course of construction. In addition, the proposed building should be supported on a foundation system that is designed to reduce the impact of expansive soils.

Accordingly, by following Mitigation Measure GEO-1 and the recommendations of the September 5, 2017 geotechnical investigation, the potential impacts of project implementation on expansive soil are considered less than significant.

e) Would the project have soils incapable of adequately supporting the use of septic tanks or alternative waste water disposal systems where sewers are not available for the disposal of wastewater?

The development of the proposed project would not require the construction or use of septic tanks or alternative wastewater disposal systems. Wastewater generated by the proposed project would be conveyed to the existing municipal sanitary sewer system that is maintained and operated by the Central Contra Costa Sanitary District. Once captured by the system, the wastewater is conveyed to the Central Contra Costa Sanitary District Treatment Plant in Martinez, which treats an average of 35.6 million gallons of wastewater per day, and has a treatment capacity of 54 million gallons per day. As such, there will be no impact from the proposed project associated with soils that might be incapable of supporting the use of septic tanks or alternative wastewater disposal systems.

VI. GREENHOUSE GAS EMISSIONS

Would the proposed project:

<table>
<thead>
<tr>
<th>Would the proposed project:</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant with Mitigation Incorporated</th>
<th>Less Than Significant</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>b) Conflict with an applicable plan, policy, or regulation of an agency adopted for the purpose of reducing the emissions of greenhouse gases?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

EXISTING CONDITIONS

The project site is developed currently developed with surface parking and two City Buildings, which are currently occupied and used for City administrative purposes. These land uses and currently generate GHG emissions from mobile trips to the site, energy sources such as lighting, and area source like consumer products, architectural coatings, and landscape equipment.

Greenhouse Gases and Climate Change

This section evaluates the potential for the proposed project to cumulatively contribute to greenhouse gas (GHG) emissions impacts. Because no single project is large enough individually to result in a measurable increase in global concentrations of GHG emissions, global warming impacts of a project are considered on a cumulative basis. This section is based on the methodology recommended by the BAAQMD for project-level review. Transportation sector emissions are based on trip generation provided by TJKM Traffic Consultants. GHG emissions modeling is included in Appendix B, Air Quality and Greenhouse Gas Emissions Data, of this IS/MND.

Scientists have concluded that human activities are contributing to global climate change by adding large amounts of heat-trapping gases, known as GHGs, into the atmosphere. The primary source of these GHG emissions is fossil fuel use. The Intergovernmental Panel on Climate Change (IPCC) has identified four major GHGs—water vapor, carbon dioxide (CO₂), methane (CH₄), and O₃—that are the likely cause of an increase in global average temperatures observed within the 20th and 21st centuries. Other GHGs identified by the IPCC that contribute to global warming to a lesser extent include nitrous oxide (N₂O), sulfur hexafluoride (SF₆), hydro fluorocarbons, perfluorocarbons, and chlorofluorocarbons.³⁵,³⁶ Black

³⁵ Water vapor (H₂O) is the strongest GHG and the most variable in its phases (vapor, cloud droplets, ice crystals). However, water vapor is not considered a pollutant, but part of the feedback loop rather than a primary cause of change.
³⁶ Black carbon contributes to climate change both directly, by absorbing sunlight, and indirectly, by depositing on snow (making it melt faster) and by interacting with clouds and affecting cloud formation. Black carbon is the most strongly light-
carbon emissions are not included in the GHG analysis because CARB does not include this pollutant in the State’s AB 32 inventory and treats this short-lived climate pollutant separately.37,38

DISCUSSION

\textit{a) Would the project generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment?}

Construction

The construction-related GHG emissions associated with the proposed project are shown in Table 4-4. BAAQMD does not have thresholds of significance for construction-related GHG emissions. However, BAAQMD has identified a threshold of 1,100 MTCO$_2$e which is used to evaluate construction emissions in order to identify whether or not construction-related GHG emissions would be substantial. The BAAQMD advises that lead agencies quantify and disclose GHG emissions that would occur during construction and make a determination on the significance of these construction-generated GHG emissions in relation to meeting AB 32 GHG emissions reduction goals. GHG emissions from construction activities are one-time, short-term emissions and therefore would not significantly contribute to long-term cumulative GHG emissions impacts of the proposed project. The net increase in emissions generated by the project was evaluated using the California Emissions Estimator Model (CalEEMod), Version 2016.3.2. As shown in Table 4-4, average annual construction emissions from the proposed project would represent a nominal source of GHG emissions. Development of the proposed project would result in an increase of GHG emissions of 301 MTCO$_2$e and would not exceed BAAQMD’s de minimus bright line threshold of 1,100 MTCO$_2$e. Construction emissions are less than significant.

Operational Phase

Development permitted under the proposed project would contribute to global climate change through direct and indirect emissions of GHG from transportation sources, energy (natural gas and purchased energy), water use and wastewater generation, and solid waste generation. The proposed project would

37 Particulate matter emissions, which include black carbon, are analyzed in Section 4.2, Air Quality. Black carbon emissions have sharply declined due to efforts to reduce on-road and off-road vehicle emissions, especially diesel particulate matter. The State’s existing air quality policies will virtually eliminate black carbon emissions from on-road diesel engines within 10 years.

adhere to CalGreen’s water efficiency measures as well as the Green Building Standards Code by incorporating all of its requisite efficiency measures. These measures were taken into account when modeling operational GHG Emissions. The total and net increase in GHG emissions associated with the proposed project are shown in Table 4-5. As shown in the table, development of the proposed project would result in a net increase of GHG emissions of 745 million metric tons of carbon dioxide equivalent (MTCO₂e) per year at buildout, and 655 MTCO₂e by the year 2030. These emissions would not exceed BAAQMD’s bright-line screening threshold of 1,100 MTCO₂e. As shown in Table 4-5, the proposed project’s GHG emissions per capita would not exceed state goals and the impact is less than significant.

Table 4-4 PROJECT GHG EMISSIONS — CONSTRUCTION PHASE

<table>
<thead>
<tr>
<th>Category</th>
<th>GHG Emissions (MTCO₂e/Year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>35</td>
</tr>
<tr>
<td>2018</td>
<td>240</td>
</tr>
<tr>
<td>2019</td>
<td>25</td>
</tr>
<tr>
<td>Total Construction Emissions (Years 2017–2020)</td>
<td>301</td>
</tr>
<tr>
<td>30-Year Amortized Construction</td>
<td>10</td>
</tr>
</tbody>
</table>

Exceeds BAAQMD Threshold? No

Note: Total emissions may not equal the sum of annual emissions shown due to rounding. New buildings would be constructed to the 2016 Building & Energy Efficiency Standards.

b) Would the project conflict with an applicable plan, policy, or regulation of an agency adopted for the purpose of reducing the emissions of greenhouse gases?

Applicable plans adopted for the purpose of reducing GHG emissions include CARB’s Scoping Plan, the Metropolitan Transportation Commission (MTC)/Association of Bay Area Government’s (ABAG) Plan Bay Area, and the City of Walnut Creek’s Climate Action Plan. A consistency analysis with these plans is presented below.

CARB’s Scoping Plan

In accordance with AB 32, CARB developed the 2008 Scoping Plan to outline the State’s strategy to achieve 1990 level emissions by year 2020. The CARB Scoping Plan is applicable to state agencies and is not directly applicable to cities/counties and individual projects. Nonetheless, the Scoping Plan has been the primary tool that is used to develop performance-based and efficiency-based CEQA criteria and GHG reduction targets for climate action planning efforts. The 2017 Climate Change Scoping Plan addresses the new interim GHG emissions target under Senate Bill (SB) 32, which requires the state to reduce its...
greenhouse gas emissions 40 percent below 1990 levels by 2030. The 2017 Climate Change Scoping Plan provides the strategies for the state to meet the 2030 GHG reduction target as established under SB 32.
<table>
<thead>
<tr>
<th>Category</th>
<th>Project</th>
<th>Percent of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed Project at Buildout (2020)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area</td>
<td><1</td>
<td>0%</td>
</tr>
<tr>
<td>Energy</td>
<td>340</td>
<td>46%</td>
</tr>
<tr>
<td>On-Road Mobile Sources</td>
<td>364</td>
<td>49%</td>
</tr>
<tr>
<td>Waste</td>
<td>34</td>
<td>5%</td>
</tr>
<tr>
<td>Water/Wastewater</td>
<td>6</td>
<td>1%</td>
</tr>
<tr>
<td>Total</td>
<td>745</td>
<td>100%</td>
</tr>
<tr>
<td>Proposed Project at 2030</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area</td>
<td><1</td>
<td>0%</td>
</tr>
<tr>
<td>Energy</td>
<td>340</td>
<td>52%</td>
</tr>
<tr>
<td>On-Road Mobile Sources</td>
<td>274</td>
<td>42%</td>
</tr>
<tr>
<td>Waste</td>
<td>34</td>
<td>5%</td>
</tr>
<tr>
<td>Water/Wastewater</td>
<td>6</td>
<td>1%</td>
</tr>
<tr>
<td>Total</td>
<td>655</td>
<td>100%</td>
</tr>
</tbody>
</table>

Note: Emissions may not total to 100 percent due to rounding. New buildings would be constructed to the 2016 Building & Energy Efficiency Standards. Source: California Emissions Estimator Model (CalEEMod) 2016.3.2.

Statewide strategies to reduce GHG emissions in the latest 2017 Climate Change Scoping Plan include implementing SB 350, which expands the Renewables Portfolio Standard to 50 percent by 2030 and doubles energy efficiency savings; expanding the Low Carbon Fuel Standard to 18 percent by 2030; implementing the Mobile Source Strategy to deploy zero-electric vehicle buses and trucks; implementation of the Sustainable Freight Action Plan; implementation of the Short-Lived Climate Pollutant Reduction Strategy, which reduces methane and hydrofluorocarbons 40 percent below 2013 levels by 2030 and black carbon emissions 50 percent below 2013 levels by 2030; continuing to implement SB 375; creation of a post-2020 Cap-and-Trade Program; and development of an Integrated Natural and Working Lands Action Plan to secure California’s land base as a net carbon sink. Statewide GHG emissions reduction measures that are being implemented as a result of the Scoping Plan would reduce the proposed project’s GHG emissions. The proposed project would be constructed to achieve the standards in effect at the time of development and would not conflict with statewide programs adopted for the purpose of reducing GHG emissions. While measures in the Scoping Plan apply to state agencies and not the proposed project, the project’s GHG emissions would be reduced from compliance with statewide measures that have been adopted since AB 32 and SB 32 were adopted. Therefore the impact would be less than significant.
MTC/ABAG’s Plan Bay Area 2040

Plan Bay Area 2040 is the Bay Area’s Regional Transportation Plan (RTP)/Sustainable Community Strategy (SCS).\(^{39}\) To achieve MTC/ABAG’s sustainable vision for the Bay Area, the Plan Bay Area land use concept plan for the region concentrates the majority of new population and employment growth in the region in Priority Development Areas (PDAs). PDAs are transit-oriented, infill development opportunity areas within existing communities. An overarching goal of the regional plan is to concentrate development in areas where there are existing services and infrastructure rather than allocate new growth to outlying areas where substantial transportation investments would be necessary to achieve the per capita passenger vehicle, vehicle miles traveled, and associated GHG emissions reductions. The proposed project is within the Walnut Creek Core Area priority development area,\(^{40}\) and would be consistent with land use policies outlined in the Walnut Creek General Plan 2025. Additionally, the proposed project would be improving an existing project site rather than constructing new growth in outlying areas. Therefore, the proposed project would not conflict with statewide programs adopted for the purpose of reducing GHG emissions and impacts would be less than significant.

City of Walnut Creek Climate Action Plan

The City Council approved Walnut Creek’s Climate Action Plan (CAP) on April 17, 2012. The Climate Action Plan demonstrates the City of Walnut Creek’s commitment to addressing the challenges of climate change. The CAP outlines the City’s overall strategies for reducing greenhouse gas emissions in response to state regulations to address climate change, and outlines ways in which the City can prepare for and adapt to the consequences of climate change. Similarly, the CAP provides energy use, transportation, land use, and solid waste strategies to reduce Walnut Creek’s greenhouse gas emissions levels to 15 percent below 2005 levels by 2020. As shown in Table 4-6, the proposed project would be consistent with applicable CAP goals. Impacts would therefore be less than significant.

<table>
<thead>
<tr>
<th>Table 4-6</th>
<th>Consistency with the City of Walnut Creek Climate Action Plan Strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy</td>
<td>Applicable Measures</td>
</tr>
<tr>
<td>Energy Use</td>
<td>EU-3. Facilitate green building and design.</td>
</tr>
<tr>
<td></td>
<td>EU-3.1: Adopt CALGreen Tier 1 by 2014 to exceed Title 24 energy efficiency standards by 15%, and adopt CALGreen Tier 2 by 2017 to exceed Title 24 energy efficiency standards by 30%.</td>
</tr>
</tbody>
</table>

Table 4-6 Consistency with the City of Walnut Creek Climate Action Plan Strategies

<table>
<thead>
<tr>
<th>Policy</th>
<th>Applicable Measures</th>
<th>Consistency with Applicable Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>EU-4. Increase water conservation.</td>
<td>shading east and west walls of structures and parking lots.</td>
<td>building and throughout the parking area. Additionally, mandatory compliance with the City’s Tree Preservation Ordinance and a Tree Removal Permit would ensure consistency with this ordinance.</td>
</tr>
<tr>
<td>EU-4.1: Work with the East Bay Municipal Utilities District and Contra Costa Water District to ensure that the Walnut Creek community achieves regional and statewide water reduction targets, including a 20% reduction as established by the State’s 20X2020 plan.</td>
<td>Consistent: The proposed project incorporates a number of features meant to conserve the use of water used for irrigation on site. Water conserving features include automatic "smart" irrigation controller with rain-sensor, low flow/low volume irrigation, point source drip irrigation for shrubs and groundcovers, low water consuming plants, soil moisture retention techniques, and mulching to reduce evapotranspiration from the root zone.</td>
<td></td>
</tr>
<tr>
<td>Transportation and Land Use</td>
<td>TLU-1: Reduce GHG Emissions</td>
<td>Consistent: The proposed project would include provisions for 7 electric vehicle (EV) charging-capable spaces (including 2 EV-accessible spaces) and 11 car/vanpool electric vehicle parking spaces (CVPE).</td>
</tr>
<tr>
<td>TLU-1.1: Facilitate the use of low-emission vehicles by coordinating with regional and state agencies for region-wide low-emission vehicle infrastructure improvements and networks.</td>
<td>Consistent: The proposed project would develop a 124-room hotel located 0.5 miles northeast of Walnut Creek Bay Area Rapid Transit District (BART) station, and 1 mile south of the Pleasant Hill Centre BART station in the central portion of Walnut Creek. The infill development would provide VMT-reducing alternative modes of transportation.</td>
<td></td>
</tr>
<tr>
<td>TLU-2. Reduce Vehicle Miles Traveled.</td>
<td>TLU-2.1: Achieve higher-density, mixed-use, infill development and through updated regulations and new incentives.</td>
<td>Consistent: The proposed project includes 6 short-term bicycle parking spaces located outside of the public right-of-way and pedestrian walkways and within 50 feet of a main hotel entrance. In addition, secure long-term bicycle parking for employees and hotel guests would be provided on the first floor of the hotel building.</td>
</tr>
<tr>
<td>TLU-3. Convert vehicular trips to alternate modes.</td>
<td>TLU-3.3: Increase the number and locations of bicycle parking by requiring new development or redevelopment to provide adequate short- and long-term bicycle parking facilities.</td>
<td>Consistent: The proposed project includes 6 short-term bicycle parking spaces located outside of the public right-of-way and pedestrian walkways and within 50 feet of a main hotel entrance. In addition, secure long-term bicycle parking for employees and hotel guests would be provided on the first floor of the hotel building.</td>
</tr>
<tr>
<td>Waste Reduction</td>
<td>WR 1.1: Reduce landfilled waste and increase promotion of recycling and composting through an expanded public education campaign, community-wide incentives, and continued partnership with the Bay Area’s Green Business Program.</td>
<td>Consistent: The proposed project would be required to provide recycling under the Mandatory Commercial Recycling regulation (CCR, Title 14, Division 7).</td>
</tr>
</tbody>
</table>

VII. HAZARDS AND HAZARDOUS MATERIALS

<table>
<thead>
<tr>
<th>Would the proposed project:</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation Incorporated</th>
<th>Less Than Significant</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Create a significant hazard to the public or the environment through the routine transport, use or disposal of hazardous materials?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>b) Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>c) Emit hazardous emissions or handle hazardous materials, substances or waste within ¼-mile of an existing or proposed school?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
</tr>
<tr>
<td>d) Be located on a site which is included on a list of hazardous material sites compiled pursuant to Government Code Section 65962.5 and, as a result, create a significant hazard to the public or the environment?</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>e) Expose people or structures to a significant risk of loss, injury, or death involving wildland fires, including where wildlands are adjacent to urbanized areas or where residences are intermixed with wildlands?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
</tr>
<tr>
<td>f) Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>g) For a project within an airport land use plan or, where such a plan has not been adopted, within 2 miles of a public airport or public use airport, result in a safety hazard for people living or working in the project area?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
</tr>
<tr>
<td>h) For a project within the vicinity of a private airstrip, result in a safety hazard for people living or working in the project area?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
</tr>
</tbody>
</table>

EXISTING CONDITIONS

The parcels located at 470-490 Lawrence Way currently have two City-owned buildings which house the City Traffic Operations. The site was originally an orchard and was first developed sometime between
1946 and 1958 as a storage yard. The areas surrounding the site were developed from as early as at least 1939 as orchards, with residential development beginning in the 1950s.

Applied Radiation Corporation operated the site until Siemens Medical Laboratories, Inc. (Siemens) acquired the site in 1974. The Siemens facilities consisted of several buildings and structures that occupied the entire block bounded by current day North Main Street, Penniman Way, Lawrence Way, and Kazebeer Road, excluding the Taco Bell restaurant (former Mobil Gas Station site). The site was identified as a small quantity generator of hazardous waste. Improvements on the site by Siemens included buildings used for administrative offices, product assembly, materials treatment, storage of materials, storage of chemical products and wastes. The site operated as a medical research facility by Siemens. Other structures reportedly included underground testing cells with peripheral subdrainage systems connected to two underground sumps. A farmhouse, the Zehner house, was located in the southwest corner of the Siemens property. The site was acquired by City of Walnut Creek around 1991 from Siemens. Between the period of 1991 and 2015, the south side of the property (470 and 480 Lawrence Way) served as the City’s recycling drop-off center. The recycling center was used to collect recyclable materials (i.e., fiber products, aluminum, glass, and plastic products), used waste oil, and anti-freeze from the public, prior to transfer to a recycling facility.

Acronyms

- DCA: Dichloroethane
- DCE: Dichloroethene
- ESLs: Environmental screening levels
- MCL: Maximum Contaminant Level
- ng/L: Nanograms per liter
- PCE: Tetrachloroethene
- RECs: Recognized environmental conditions
- SVOCs: Semi-volatile organic compounds
- TCA: Trichloroethene
- TCB: Trichlorobenzene

41 Site Investigation Work Plan: 470, 480, 490 Lawrence Way Properties Walnut Creek, California. The Source Group, June 29, 2015, page 2-3.
42 Site Investigation Report, 470, 480, 490 Lawrence Way Properties, Walnut Creek, California prepared for City of Walnut Creek by The Source Group, Inc. (SGI) dated April 14, 2016.
43 Phase II Environmental Site Assessment 470, 480, and 490 Lawrence Way, Walnut Creek, California prepared for City of Walnut Creek by SGI dated January 25, 2013.
A series of investigations have been conducted on the site by ENGEO, Inc. (ENGEO), Med-Tox and The Source Group, Inc. (SGI). The Site Investigation Report prepared by SGI dated April 14, 2016 is included as Appendix E, Hazardous Materials Reports, of this IS/MND. Results of these investigations indicate that:

- Although there have been detections of VOCs and TPH in site groundwater, there are no on-site sources of VOCs or TPH to soil or groundwater;
- VOCs detected in groundwater at the site are the result of migration in groundwater from upgradient sources; and
- Soil gas sampling results and subsequent modeling of potential vapor intrusion to a future building indicate that chemicals present in groundwater beneath the site have the potential to migrate into a future building without mitigating actions.

The California Environmental Protection Agency, Department of Toxic Substances Control (DTSC) is the agency responsible for overseeing site environmental conditions and activities. Environmental investigations and remedial actions at the site are governed by a Voluntary Cleanup Agreement (Docket No: HAS-VCA 14/15-106), signed by the City and DTSC on April 15, 2015. Reports and presentations summarizing on-site environmental investigations are available on the DTSC’s Envirostor database. These reports/presentations include:

- Level II Environmental Site Assessment June 8, 1990 prepared by ENGEO Inc. (ENGEO);
- Results of Soil Gas Survey September 10, 1990 prepared by ENGEO;
- Work Plan for Soil and Ground-Water Investigation September 27, 1990 prepared by ENGEO;
- Report on Soil and Ground-Water Investigation November 8, 1990 prepared by ENGEO;
- Phase I Environmental Site Assessment 470, 480, and 490 Lawrence Way, Walnut Creek, California dated June 27, 2012 prepared by SGI;
- Phase II Environmental Site Assessment 470, 480, and 490 Lawrence Way, Walnut Creek, California dated January 25, 2013 prepared by SGI;
ENVIRONMENTAL ANALYSIS AND FINDINGS

- Site Investigation Work Plan 470, 480, and 490 Lawrence Way, Walnut Creek, California dated September 18, 2015 prepared by SGI;
- Site Investigation Report 470, 480, and 490 Lawrence Way, Walnut Creek, California dated April 14, 2016 prepared by SGI;
- Work plan for Supplemental Soil Vapor Investigation City of Walnut Creek Corporation Yard 470, 480, and 490 Lawrence Way Properties, Walnut Creek, California dated April 14, 2017 prepared by SGI;
- Removal Action Work Plan, 470, 480, and 490 Lawrence Way, Walnut Creek, California, pending submittal prepared by Apex Companies, LLC.

Based upon its review of information presented in these documents, DTSC has confirmed that vapor intrusion mitigation is required to minimize the potential for VOCs in soil gas to migrate into a future building’s interior. The Removal Action Work Plan describes remedial alternatives to mitigation for vapor intrusion. The selected alternatives are engineering and institutional controls, and include:
- Incorporation of an aerated floor with passive venting into the building’s design;
- Preparation of a Site Management Plan; and
- Placement of a Land Use Covenant on the property.

Recognized On-Site Environmental Conditions

The ground surface elevation is approximately 120 feet above mean sea level. Depth to groundwater on the project site is approximately 14 feet bgs. Groundwater at the site is known to be impacted by the VOCs PCE, TCE, chloroform and naphthalene. Available data indicate that these VOCs are potentially associated with historical industrial site activities.

Following a Level I site assessment performed in 1989, ENGEO installed two soil borings (B-1 and B-2) and one groundwater monitoring well (MW-1) at the site in April 1990 (ENGEO, 1990a).

Soil sampling did not reveal the presence of TPH as gasoline (TPHg), TPH as diesel (TPHd), oil and grease, VOCs, or SVOCs at concentrations above laboratory detection limits. No elevated concentrations of priority pollutant metals were noted. VOCs were detected in the groundwater samples collected from well MW-1 in April 1990 and May 1990, including: 1,1,1-TCA, 1,1-DCE, 1,1-DCA, and TCE. All four compounds exceeded their respective MCLs.

Based on the results of groundwater samples collected from well MW-1 in April 1990, ENGEO conducted a passive soil vapor investigation in July 1990 to evaluate the source of the groundwater contamination (ENGEO, 1990b). On July 26 and July 27, 1990, 48 passive soil gas probes were installed at the site.

Results from the passive soil gas investigation revealed the presence of a PCE source area in the northern portion of the site and a TCB source area near Building 7A. The compound with the greatest frequency of
detections in soil vapor was PCE, which was detected in the majority of soil vapor probes installed in the northern portion of the site. TCE, TCA, TCB (undifferentiated), trichlorofluoromethane (Freon 11), trichlorotrifluoroethane (Freon 113) and numerous hydrocarbons (not identified in the report) were also detected in soil vapor at the site.

In September 1990, Med-Tox conducted indoor air monitoring at select buildings located on the site (Med-Tox, 1990). Indoor air samples were collected in and around Buildings 2, 4/4A, 6/6A, and 7/7A. According to the air monitoring report prepared by Med-Tox, air samples were collected from the “breathing zone” in the center of the identified spaces.

Results from indoor air monitoring revealed the presence of VOCs in indoor air in Buildings 2, 7/7A, 6/6A, and 4/4A at concentrations that ranged from 48 ng/L to 63 ng/L. VOCs were detected in the ambient air sample at a concentration of 41 ng/L. Specific chemicals detected in one or more samples include acetone, benzene, 2-butanone, carbon tetrachloride, chloroform, ethylbenzene, hexane, styrene, PCE, toluene, 1,1,1-TCA, and xylenes.

In October 1990, ENGEO completed a soil and groundwater investigation (ENGEO, 1990d). The investigation included 20 soil borings to a maximum depth of 10 feet bgs in the storage yard area and the installation of three groundwater monitoring wells.

Results from soil sampling revealed the presence of PCE-impacted soil in the upper 1 to 2 feet of soil in the vicinity of Building 7/7A and in the storage yard east of Building 6.

Results from groundwater sampling of wells MW-2 and MW-3 revealed the presence of VOCs including 1,1-DCE, 1,2-DCE, 1,1-DCE, 1,2-DCA, 1,1,1-TCA, 1,1,2-TCA, TCE, PCE, and Freon-113 in select groundwater samples. Generally, PCE and 1,1-DCE were detected at the highest concentrations. 1,1-DCE was detected in well MW-2 at a concentration of 18 µg/L and in well MW-3 at a concentration of 47 µg/L. PCE was detected in well MW-2 at a concentration of 11 µg/L and in well MW-3 at a concentration of 120 µg/L. VOCs were not detected in well MW-4 at concentrations above laboratory detection limits. Well MW-1 was not sampled during the October 1990 field investigation.

A Phase I ESA for the site was completed by SGI in June 2012. According to the Phase I ESA, the site was first developed as orchards from as early as the 1900s. Sometime between 1946 and 1958, the site was developed as a storage yard. Prior to its current use for the City of Walnut Creek traffic operations, City Impound Yard, and City recycling drop-off center, the site was occupied by a medical laboratory operated by Siemens Medical Laboratories, Inc. The topography of the project site is relatively flat, approximately 120 feet above mean sea level. The project site includes 15 trees of varying species and sizes located around the perimeter of the project site (see Figure 3-3). The RECs identified by SGI in the Phase I ESA include:

- Chlorinated solvent-impacted soil, groundwater, and subsurface vapor associated with a suspected release from the former Siemens facility previously located on the site, and;
Petroleum hydrocarbon-impacted soil, groundwater, and subsurface vapor associated with the historical recycling operations conducted on the site.

Based on the RECs identified on the site, SGI recommended a Phase II ESA.

A Phase II ESA was conducted by SGI in October 2012. The Phase II ESA consisted of the advancing and sampling five soil borings (SGI-1 through SGI-5) to a maximum depth of 30 feet bgs, collecting five grab groundwater samples (one from each boring), and installing four temporary soil vapor wells.

Soil, groundwater, and soil vapor sample results were compared with ESLs developed by the San Francisco Regional Water Quality Control Board (SFRWQCB). Results from soil sampling activities did not reveal the presence of organochlorine pesticides at concentrations above ESLs. Of the metals analyzed, only arsenic and cobalt were detected at concentrations above ESLs, neither of which exceeded its respective background concentration.

Compounds detected in groundwater at concentrations above ESLs include TPHd, TPHmo, and VOCs. TPHd and TPHmo were detected at concentrations above ESLs at the southwest portion of the site. These hydrocarbons were interpreted to be related to an off-site source, likely the upgradient Mobil station that had a documented release of petroleum hydrocarbons. None of the VOCs exceeded their respective ESL; their presence was interpreted to be related to releases from the Siemens facility formerly located on the site.45

The primary compound detected in soil vapor was PCE, which was the only compound detected at concentrations above ESLs. The highest concentration of PCE was detected at sample location SGI-02, near the western side of former Building 6 and the eastern side of former building 7A, at 22,000 µg/m³.

On October 4, 2017, a soil vapor investigation was conducted at the site. The purpose was to define the lateral and vertical extent of VOCs near the former Building 7A. The investigation consisted of the installation of four, dual-nested soil vapor probes and sampling of all soil vapor probes. A total of 23 soil vapor samples were analyzed for VOCs. VOCs were detected in all 23 samples. Only PCE was detected at concentrations greater than the applicable screening levels. In samples collected from 5 feet bgs, PCE concentrations ranged from 71 µg/m³ in VP-4-5 to 39,000 µg/m³ in VP-7-5. In samples collected from 10 feet bgs, PCE concentrations ranged from 20 µg/m³ in VP-4-10 to 36,000 µg/m³ in VP-7-10.

Schools

There are no schools within ¼-mile of the project site. The school closest to the project site is Buena Vista Elementary School located approximately 0.3-mile to the west. Additional schools that serve the City of Walnut Creek are generally located within 1 to 2 miles of the project site.

45 SGI, Inc. Phase II Environmental Site Assessment 470, 480, and 490 Lawrence Way, Walnut Creek, California dated January 25, 2013.
Airports and Private Airstrips

Buchanan Field Airport, a county-owned public use airport approximately 5 miles north of the site in Concord is the nearest airport. There are no private airstrips near the project site or heliports in the vicinity of the site.46 The nearest hospital heliport is located at John Muir Medical Center in Walnut Creek approximately 1 mile to the east of the site.47

Emergency Response Planning

The City of Walnut Creek has established emergency preparedness procedures to respond to a variety of natural and man-made disasters that could affect the community. In the event of an emergency, the City will respond according to the Standardized Emergency Management System (SEMS) developed by the State. The SEMS system establishes a hierarchy of response, with local government as the first responders. The city has Community Emergency Response Teams and works with the community through the Citizen Corps Council to facilitate personal preparedness Community Emergency Response Team (CERT) training is offered to community members who want to volunteer to be a disaster service worker.48

Wildfire Hazards

The project site is completely developed and surrounded by urban development and is not mapped as a Fire Hazard Severity Zone by the California Department of Forestry and Fire Prevention.49 The Contra Costa County Fire Protection District provides fire protection to the city. The nearest fire station to the project site is Contra Costa Station 1 at 1330 Civic Dr. about Station 13 at 525 Laurel Street about ¾-mile to the southeast.

DISCUSSION

a) Would the project create a significant hazard to the public or the environment through the routine transport, use or disposal of hazardous materials?

Project Operation

The proposed project, a hotel development, would not include the routine transport or disposing of hazardous materials. Project operation would involve the use of small amounts of hazardous materials for cleaning and maintenance purposes, such as cleansers, degreasers, pesticides, and fertilizers. These

potentially hazardous materials would not be of a type or be present in sufficient quantities to pose a significant hazard to public health and safety or the environment. Furthermore, such substances would be used, transported, stored, and disposed of in conformance with existing regulations of several agencies, including RCRA, which provides the ‘cradle to grave’ regulation of hazardous wastes; Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), which regulates closed and abandoned hazardous waste sites; the Hazardous Materials Transportation Act, which governs hazardous materials transportation on US roadways; The International Fire Code (IFC), which creates procedures and mechanisms to ensure the safe handling and storage of hazardous materials; California Code of Regulations (CCR) Title 22, which regulates the generation, transportation, treatment, storage and disposal of hazardous waste; and CCR Title 27, which regulates the treatment, storage and disposal of solid wastes. Thus, associated impacts from the operational phase of the proposed project would be less than significant.

Project Construction

Construction activities at the project site would involve the use of larger amounts of hazardous materials than would operation of the proposed project, such as operation of petroleum-based fuels for maintenance and construction equipment, and coatings used in construction, which would be transported to the site periodically by vehicle and would be present temporarily during construction. These potentially hazardous materials, however, would not be of a type or occur in sufficient quantities on-site to pose a significant hazard to public health and safety or the environment and would also be short-term. Additionally, as with proposed project operation, the use, transport, and disposal of construction-related hazardous materials would be required to conform to existing laws and regulations. Compliance with applicable laws and regulations governing the use, storage, and transportation of hazardous materials would ensure that all potentially hazardous materials are used and handled in an appropriate manner and would minimize the potential for safety impacts to occur. Consequently, associated impacts from construction of the proposed project would be less than significant.

b) Would the project create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment?

Project Operation

The proposed project, a hotel, is not considered the type of project that would create a hazardous materials threat to the users of the site or the surrounding land uses. The Contra Costa County Hazardous Material Division (CCCHMD) is the Certified Unified Program Agencies (CUPA) for Contra Costa County including the City of Walnut Creek, and is responsible for enforcing Chapter 6.95 of the Health and Safety Code. As the CUPA, CCCHMD is required to regulate hazardous materials business plans (HMBP) and chemical inventory, hazardous waste and tiered permitting, underground storage tanks, and risk-management plans. The HMBP is required to contain basic information on the location, type, quantity, and health risks of hazardous materials stored, used, or disposed of on development sites. The HMBP also
contains an emergency-response plan, which describes the procedures for mitigating a hazardous release, procedures, and equipment for minimizing the potential damage of a hazardous materials release, and provisions for immediate notification of the Cal Emergency Management Agency (EMA) and other emergency-response personnel, such as the Contra Costa County Fire Department. Implementation of the emergency response plan facilitates rapid response in the event of an accidental spill or release, thereby reducing potential adverse impacts. Furthermore, CCCHMD is required to conduct ongoing routine inspections to ensure compliance with existing laws and regulations; to identify safety hazards that could cause or contribute to an accidental spill or release; and to suggest preventative measures to minimize the risk of a spill or release of hazardous substances. Compliance with these regulations would ensure that the risk of accidents and spills is minimized to the maximum extent practicable during the operation of the proposed project. Consequently, associated impacts would be less than significant.

Project Construction

Similar to the operation of the proposed project, the type of construction materials and equipment would be considered standard for this type of development. All spills or leakage of petroleum products during construction activities are required to be immediately contained, the hazardous material identified, and the material remediated in compliance with applicable State and local regulations. All contaminated waste would be required to be collected and disposed of at an appropriately licensed disposal or treatment facility. Furthermore, strict adherence to all emergency response plan requirements set forth by CCCHMD would be required through the duration of the construction of each individual development project. Therefore, substantial hazards to the public or the environment arising from the routine use of hazardous materials during project construction would not occur, and impacts would be less than significant.

Prior to the construction of the proposed project, the two existing buildings on-site that were constructed between 1982 and 1998 would be demolished. During the demolition phase of the proposed project, potentially hazardous building materials (i.e., ACMs, LBPs, PCBs, mercury, household wastes) may be encountered. Removal of these types of hazardous materials (if present) by contractors licensed to remove and handle these materials in accordance with existing federal, State, and local regulations would insure that risks associated with the transport, storage, use, and disposal of such materials would be reduced to the maximum extent practical. Consequently, associated impacts from demolition phase of the proposed project would be less than significant.

c) Would the project emit hazardous emissions or handle hazardous materials, substances or waste within ¼-mile of an existing or proposed school?

There are no schools within ¼-mile of the proposed project site, and no impact would occur.

d) Would the project be located on a site which is included on a list of hazardous material sites compiled pursuant to Government Code Section 65962.5 and, as a result, create a significant hazard to the public or the environment?

The project site is listed on DTSC’s EnviroStor database as being in the voluntary cleanup program under the oversight of the DTSC for cleanup of chlorinated solvents in groundwater due to legacy groundwater contamination from Applied Radiation Corporation’s activities prior to Siemens purchase of the site. \(^50\) Groundwater at the site is known to be impacted by the VOCs PCE, TCE, chloroform and naphthalene from historic site operation. Available data indicate that these VOCs are migrating in groundwater onto the project site from upgradient properties, located west of the project site (e.g., the current Walnut Creek Chrysler Jeep Dodge Ram car dealership). Soil gas impacted with VOCs has migrated onto the project site from this upgradient source. Petroleum hydrocarbon impacted soil, groundwater and soil vapor was identified as a recognized environmental condition. However, the petroleum hydrocarbons may have originated off site at a former gas station located hydrologically upgradient. \(^51\)

The voluntary cleanup agreement (Docket No: HAS-VCA 14/15-106) that was entered into by the DTSC and City of Walnut Creek, was signed on April 9, 2015 by the City and April 15, 2015 by the DTSC. DTSC reviewed and accepted the 2012 Phase I and 2013 Phase II reports prepared by SGI. \(^52\) A Site Investigation Report was prepared and submitted in April 2017 that indicated additional soil gas samples should be collected at the site. The 2017 Site Investigation Report found unacceptable health risks to hypothetical on-site commercial/industrial worker and residential receptors. Additional soil gas samples were collected in December 2017 and at the time of preparation of this report, only summary tables of the most recent soil gas testing were available which indicate that levels of PCE and 1,3-butadiene exceed health-based screening levels for indoor air for commercial/industrial exposure. As such, the impact is potentially significant.

DTSC has indicated that a Removal Action Workplan (RAW) and Removal Action Completion Report (RACR) be prepared for the project site in 2018 and 2019, respectively. \(^53\) Under DTSC’s oversight, a Removal Action Work Plan for the project site was prepared by Apex Companies, LLC on behalf of the project applicant. The purpose of the RAW is to evaluate the site data and establish removal action objectives (RAOs) that are protective of human health and the environment. Protocols outlined in the RAW and RACR are to be followed during design, construction, and post-construction project site activities. RAWs are remedy selection documents prepared pursuant to Health and Safety Code section 25356.1. RAWs are prepared when a nonemergency removal action is proposed at a hazardous substance release site when projected costs are less than $2,000,000. If remediation costs are estimated to be greater than $2,000,000 then a Remedial Action Plan (RAP) is required.

\(^51\) Site Investigation Report, 470, 480, 490 Lawrence Way Properties, Walnut Creek, California prepared for City of Walnut Creek by The Source Group, Inc. (SGI) dated April 14, 2016.

The RAW, developed for the project applicant’s currently proposed redevelopment of the project site, includes the following components and actions that will be conducted during design, construction, and post-construction activities:

- Ann Engineering Evaluation/Cost Analysis or its equivalent, as well as a Human Health Risk Assessment.
- A listing of the goals to be achieved through the removal action, a listing of alternative removal action and their evaluation on effectiveness, feasibility of implementation, and cost.
- A Sampling Analysis Plan to confirm the effectiveness of the RAW.
- An evaluation of remedial alternatives and identification of presumptive remedies that will mitigate chemicals of potential concern (COPCs) to reduce the threat to human health and the environment. The selected removal alternatives include Engineering and Institutional Controls.
 - The Engineering Controls include:
 - Design of subsurface foundations and utility trenches in a manner that will not enhance migration of groundwater that contains VOCs through redevelopment activities, and
 - Installation of a passively-vented aerated floor beneath ground level building to mitigate vapor intrusion into overlying occupied building spaces.
 - The Institutional Controls include:
 - Preparation of a Site Management Plan, which may include proper management of groundwater that may contain VOCs during construction, screening of soil during construction by observation, and proper management of soil if chemicals of potential concern (COPCs) are detected in sampled soil above regulatory screening levels,
 - Placement of a Land Use Covenant (LUC) and Deed Restriction on the property, which limits current and future use of the site to commercial and/or industrial use only and includes limitations on groundwater use at the project site.\(^{54}\)

These measures are expected to be protective of future project site occupants. Prior to occupancy, sub-slab soil gas samples will most likely be collected to confirm sub-slab soil gas concentrations are below applicable screening values. In the event the sub-slab soil gas concentrations exceed screening levels, passive sub-slab venting or active sub-slab depressurization could be implemented. However, implementation of the proposed project could result in potentially significant impacts to the public or environment, requiring mitigation.

Mitigation Measure HAZ-1: Implementation of the engineering and institutional protocols of the RAW, RACR, SMP, and LUC during design, construction, and post-construction project site activities shall be required to ensure contamination in soil, groundwater, and soil gas would not pose substantial hazards to the public or the environment.

\(^{54}\) Draft Removal Action Workplan 470, 480, 490 Lawrence Way Properties Walnut Creek, California 093-WCC-016, APEX. Prepared for the City of Walnut Creek, February 22, 2018.
Adherence to Mitigation Measure HAZ-1 above would ensure the project would not expose the public to hazardous materials and impacts would be less than significant with mitigation.

e) Would the project expose people or structures to a significant risk of loss, injury, or death involving wildland fires?

The project site is fully developed and is surrounded by built-out urban uses and is not mapped as a Fire Hazard Severity Zone by the California Department of Forestry and Fire Prevention. The proposed project would not subject people or structures to wildfire hazards, and no impact would occur.

f) Would the project impair implementation of, or physically interfere with, an adopted emergency response plan or emergency evacuation plan.

The proposed project would not block roads and would not impede emergency access to surrounding properties or neighborhoods. All construction staging would occur on-site. Construction parking would occur on-site; or in other parking lots nearby subject to the proposed project Construction Traffic Control Plan. Impacts would be less than significant.

g) For a project within an airport land use plan or, where such a plan has not been adopted, within 2 miles of a public airport or public use airport, would the project result in a safety hazard for people living or working in the project area?

The project site is not within an airport land use plan area or within 2 miles of a public use airport. The nearest public-use airport is Buchanan Field Airport, a county-owned public use airport approximately 5 miles north of the site in Concord. Accordingly, the proposed project would not subject people or structures to hazards related to aircraft crashes and the proposed buildings would not create a hazard to air navigation. Therefore, no impact would occur.

h) For a project within the vicinity of a private airstrip, would the project result in a safety hazard for people living or working in the project area?

There are no private airstrips near the proposed project site, and no impact would occur.

VIII. HYDROLOGY AND WATER QUALITY

<table>
<thead>
<tr>
<th>Would the proposed project:</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation Incorporated</th>
<th>Less Than Significant</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Violate any water quality standards or waste discharge requirements?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>b) Substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a significant lowering of the local groundwater table level?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>c) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, or substantially increase the rate or amount of runoff in a manner which would result in substantial erosion, siltation, or flooding on- or off-site?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>d) Create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>e) Provide substantial additional sources of polluted runoff, or otherwise substantially degrade water quality?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>f) Place occupied development within a 100-year flood hazard area as mapped on a federal Flood Hazard Boundary or Flood Insurance Rate Map or other flood hazard delineation map?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>g) Place within a 100-year flood hazard area structures which would impede or redirect flood flows?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>h) Expose people or structures to a significant risk of loss, injury or death involving flooding, including flooding as a result of the failure of a levee or dam?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>i) Potentially be inundated by seiche, tsunami, or mudflow?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

EXISTING CONDITIONS

The topography of the project site is nearly flat with a slight gradient to the northeast. The site is located within the Grayson Creek/Murderers Creek sub watershed of the Walnut Creek Watershed, which drains to Pleasant Hill and Pacheco. The existing overland drainage releases north of the site towards Penniman Way. Municipal stormwater discharge in Walnut Creek, including the project site, is regulated by the Municipal Regional Stormwater National Pollutant Discharge Elimination System (NPDES) permit (MRP) issued for the San Francisco Bay Area Region (Order No. R2-2015-0049), which was recently revised and is
in effect as of January 1, 2016. Stormwater is also regulated through the Contra Costa County Stormwater C.3 requirements, and the through Title 9, Chapter 16 of the City’s Municipal Code, *Stormwater Management and Discharge Control*, to ensure compliance with C.3 provisions and NPDES permit requirements.

The project site is currently developed and connected to the City’s storm drain system. As shown on Figure 3-8, there is a 18-inch storm drain located beneath Lawrence Way and an 8-inch storm drain located at the far west portion of the project site that drains to the City’s storm drain system.

Proposed drainage includes an internal storm drain network that connects to twenty-one bioretention areas that total 3,404 square feet along the perimeter of the site and building entrance, as shown on Figure 3-8 in Chapter 3, Project Description, of this IS/MND. Other stormwater design features include directing roof runoff onto vegetated areas, directing runoff from sidewalks, walkways, and patios onto vegetated areas, slotted retaining curbs and gutters that direct parking lot runoff to vegetated areas, and permeable pavers for surface parking spaces. The location and configuration of the proposed stormwater low impact development (LID) features are shown on Figure 3-8 in Chapter 3 Project Description, of this IS/MND.

Part of the City of Walnut Creek, including the project site are located within the Ygnacio Valley Groundwater Basin, which spans 25 square miles in parts of the cities of Walnut Creek, Pleasant Hill, Concord, and Martinez, as identified by the San Francisco RWQCB. However, groundwater is not used for municipal water supply within the City. According to a detailed geotechnical investigation of the project site, the depth to groundwater in the vicinity of the site ranges from approximately 20 feet below ground surface (bgs) on the northern portion of the site and at 9.5 feet below ground surface in the central portion of the site. In addition, fill materials from the filling in of a former drainage may extend deeper on the southern edge of the property, which may require deeper over-excavation and re-compaction in that area. Although groundwater depth is unknown within this area, it is possible that groundwater dewatering would be required with construction of the project.

The project site is not located within a FEMA-designated 100-year floodplain. The project site is not within a dam inundation zone. According to the ABAG earthquake and hazards interactive maps, the site is not in a debris flow source area and would not be susceptible to mudflows. Further, no levees or water

60 City of Walnut Creek General Plan Draft EIR, Figure 26 Flood Prone Areas.
bodies are located in the vicinity of the proposed project site. Also, according to the ABAG tsunami map, the project site is not within a tsunami inundation zone.

DISCUSSION

a) *Would the project violate any water quality standards or waste discharge requirements?*

Urban runoff can carry a variety of pollutants, such as soil and grease, metals, sediment and pesticide residues from roadways, parking lots, rooftops, and landscaped areas, and deposit them into adjacent waterways via the storm drain system. Construction activities could result in the degradation of water quality, releasing sediment, oil and grease, and other chemicals into storm drains and/or nearby water bodies.

Construction Impacts

Clearing, grading, excavation, and construction activities associated with the proposed project have the potential to impact water quality through soil erosion and increasing the amount of silt and debris carried in runoff. Additionally, the use of construction materials such as fuels, solvents, and paints may present a risk to surface water quality. Finally, the refueling and parking of construction vehicles and other equipment on-site during construction may result in oil, grease, or related pollutant leaks and spills that may discharge into the storm drain system.

To minimize these potential impacts, the proposed project would be required to comply with the NPDES General Construction Permit (GCP) as well as prepare a Storm Water Pollution Prevention Plan (SWPPP) that requires the incorporation of BMPs to control sedimentation, erosion, and hazardous materials contamination of runoff during construction. The SWRCB mandates that projects that disturb one or more acres must obtain coverage under the Statewide GCP. Since the proposed project will redevelop approximately 2.26 acres, it will be subject to these requirements. The GCP also requires that prior to the start of construction activities, the project applicant must file Permit Registration Documents (PRDs) with the SWRCB, which includes a Notice of Intent (NOI), risk assessment, site map, annual fee, signed certification statement, SWPPP, and post-construction water balance calculations.

Prior to the issuance of a grading permit by the City of Walnut Creek, the project applicant is required to comply with the Contra Costa County Stormwater C.3 requirements, which include the minimization of impervious surfaces, measures to detain or infiltrate runoff from peak flows to match pre-development conditions, and agreements to ensure that the stormwater treatment and flow control facilities are maintained in perpetuity.

In addition, the project must comply with the City of Walnut Creeks’ existing regulatory requirements, including Title 9, Chapter 16, Stormwater Management and Discharge Control, which is designed to reduce pollutants in stormwater discharges to the maximum extent practicable; and Chapter 9, Grading, Site Development, which requires the project applicant to obtain a grading permit including preparation.
and implementation of an Erosion Control Plan if construction is to be done between October 15th and April 15th. Because of the potential presence of shallow groundwater, provisions to minimize the potential for water quality impacts must be implemented with construction dewatering. Small amounts of dewatering could be discharged to the storm drain under the Construction General Permit or a Waste Discharge Requirement (WDR) permit or NPDES permit may be required for more substantial amounts of dewatering.

Adherence to applicable water quality regulations, preparation of a SWPPP, compliance with the City of Walnut Creek Municipal Code, and possibly compliance with an individual WDR/NPDES permit with construction dewatering is required would ensure that water quality standards are not violated during construction. Consequently, potential impacts associated with water quality during construction would be less than significant.

Operational Impacts

Runoff from commercial properties and parking lots typically contain oils, grease, fuel, antifreeze, byproducts of combustion (such as lead, cadmium, nickel, and other metals), as well as fertilizers, herbicides, pesticides, and other pollutants. Precipitation at the beginning of the rainy season may result in an initial stormwater runoff (first flush) with high pollutant concentrations.

Water quality in stormwater runoff is regulated locally by the Contra Costa Countywide Water Pollution Prevention Program (SMCWPPP), which include the C.3 provisions set by the San Francisco Bay RWQCB’s MRP. The MRP was amended in 2015 and includes stricter requirements for incorporating post-construction stormwater control/Low Impact Development (LID) measures into new development and redevelopment projects. Since the proposed project would create and/or replace 10,000 square feet or more of impervious surface, it would qualify as a “Regulated project” and would be required to incorporate site design, source control, and stormwater treatment measures to the maximum extent practicable. The C.3 provisions for new development and redevelopment projects are intended to protect water quality by minimizing pollutants in runoff and treating runoff prior to discharge.

The project applicant must prepare and submit a Stormwater Control Plan to the City for approval in accordance with the MRP and SMCWPPP C.3 Guidebook. In addition, a Storm Water Facility Operation and Maintenance (O&M) Plan must be prepared and submitted to the City and execute agreements to ensure the stormwater treatment facilities are maintained in perpetuity.

The project applicant has prepared a preliminary C.3 worksheet showing the change in impervious area and the appropriateness of stormwater treatment elements (see Appendix F, Stormwater Control Plan, of this IS/MND). The site is currently almost entirely covered with impervious surfaces. Implementation of the proposed project would replace 68,466 square feet of existing impervious area, resulting in a decrease of impervious surfaces by 30,070 square feet. As described above, stormwater runoff generated at the site will be directed to twenty-one bioretention areas on-site where the stormwater will be treated, filtered, and released gradually to the City’s storm drain system. This will minimize potential water quality
impacts associated with development. Details of the proposed on-site stormwater treatment system are provided as Figure 3-8 in Chapter 3, Project Description, of this IS/MND. According to the Stormwater Control Plan submitted by the applicant (Appendix F), no potential sources of runoff pollutants have been identified; therefore, no source control BMP’s are proposed. In compliance with the Contra Costa Clean Water Program Stormwater C.3 Guidebook, the applicant-proposed site design measures and stormwater treatment control measures to minimize potential water quality impacts for the project are as follows:

- **Site Design Measures**
 - Direct roof runoff to vegetated areas
 - Direct runoff from sidewalks, walkways, and patios to vegetated areas
 - Direct runoff from parking lot to vegetated areas

- **Treatment Control Measures**
 - Twenty-one bioretention areas totaling 3,404 square feet with ultimate discharge to the City’s storm drain system.

Collectively, the stormwater design and treatment features will address the anticipated and expected pollutants of concern from the operational phase of the proposed project. Through the development review process, the City would ensure that the proposed project complies with various statutory requirements necessary to achieve regional water quality objectives and protect groundwater and surface waters from pollutants in stormwater runoff. Stormwater runoff generated on the project site would be managed in accordance with all applicable federal, State, and local water quality regulations in order to effectively minimize the proposed project’s impacts on water quality.

Through compliance with the MRP C.3 requirements, including preparation and implementation of a Stormwater Control Plan and Stormwater O&M Plan, and construction of stormwater treatment measures, the potential impact to water quality from project operation would be *less than significant*.

(b) Would the project substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a significant lowering of the local groundwater table level?

New construction could result in impacts related to groundwater if the construction would require dewatering or reduce groundwater recharge. Grading and cut-and-fill activities may encounter shallow groundwater. Groundwater elevations range from 20 feet bgs on the northern portion of the site to 9.5 feet bgs in the central portion of the site. In addition, fill materials from the filling in of a former drainage may extend deeper on the southern edge of the property, which may require deeper over-excavation and re-compaction in that area. Although groundwater depth is unknown within this area, temporary construction dewatering may be necessary.

However, the project is not anticipated to adversely impact groundwater resources because required excavations would intersect only the shallow groundwater table and it would be a temporary occurrence. As groundwater may be encountered on-site, implementation of the recommendations listed in the Geotechnical Report prepared for the project would reduce potential impacts. Small amounts of dewatering could be discharged to the storm drain system under the Construction General Plan designates the project site as Permit. Substantial amounts of dewatering would require a Waste Discharge Requirement (WDR) permit from the San Francisco Bay RWQCB. The WDR permit would require testing to ensure that discharged water did not pose a risk to water quality. Limits on the quantity of groundwater discharge during dewatering and the temporary nature of the construction dewatering would ensure that substantial lowering of the groundwater table would not occur. In addition, the proposed project would be subject to SWPPP requirements, which include measures for spill prevention, control, and containment that would prevent potential construction pollutants from leaching into the shallow groundwater.

Groundwater recharge may be reduced if areas currently available for the infiltration of rainfall runoff are reduced and permeable areas are replaced by impermeable surfaces. The project site is currently almost entirely covered with impervious surfaces. Because development of the proposed project would reduce the impervious surface on site, drainage facilities are in compliance with CCC C.3 Stormwater Guidelines, Option 1. The project also proposes low impact development (LID) through the installation of bioretention areas and the direction of roof runoff to landscaped areas. Therefore, the proposed project would not result in a significant change in groundwater recharge.

Implementation of the proposed project would result in an increase in water demand as compared to existing conditions. However, groundwater is not a substantial source to municipal supply in Walnut Creek. EBMUD supplies potable water for the proposed project and does not use groundwater supplies to meet demand. Since the proposed project would not develop or increase the use of groundwater supplies, implementation of the project would have a less than significant impact with respect to groundwater supplies or groundwater recharge.

The proposed project is within the boundaries of an existing commercial development and paved parking lot that has previously been developed and currently drains to the City’s storm drain system. The

67 The Bayside Groundwater Project, completed in 2010, allows EBMUD to bank water during wet years for extraction, treatment and use during dry years.
proposed project does not involve the alteration of any natural drainage channels or any watercourse. It also will not alter existing drainage patterns other than creating a new storm drain system within the site that connects to twenty-one proposed bioretention areas for treatment and flow control prior to discharge into the City’s storm drain system. These proposed stormwater treatment facilities are shown on Figure 3-8 (grading plan) in Chapter 3, Project Description, of this IS/MND.

The proposed project will involve site improvements that would require grading or soil exposure during construction that could result in erosion and/or siltation if not controlled. To minimize this potential impact, the proposed project would be required to comply with all of the requirements in the State GCP, including preparation of PRDs and submittal of a SWPPP to the SWRCB prior to the start of construction activities. The SWPPP includes BMPs for runoff, erosion, and sediment transport. Additionally, the Walnut Creek Municipal Code requires disturbed surfaces to be stabilized following construction activities and limits grading activities during the rainy season (October 15th to April 15th). Implementation of NPDES requirements and local City grading and excavation regulations as specified in the Municipal Code would reduce potential erosion and siltation impacts to less than significant.

The project site is already developed and construction of the proposed project would maintain flow patterns that are similar to existing conditions, except for the addition of twenty-one bioretention areas. Because the project would result in a decrease in the amount of impervious surfaces and install bioretention areas, the proposed project would result in longer drainage flow times and post-development peak runoff rates that are lower than the pre-development peak runoff rates. In addition, the proposed project is required to comply with the C.3 provisions of the MRP permit and the project applicant must submit a SWCP to the City that shows full compliance with the regulatory requirements. These provisions require BMPs and LID measures to be implemented across the project site, which incorporate site design and treatment control measures that provide both flow control and treatment to runoff before it enters the storm drain system. Therefore, the proposed project would not substantially increase the rate or amount of surface runoff in a manner that would cause on-site and/or off-site flooding.

In summary, the proposed project is not expected to significantly alter existing drainage patterns at the site or increase the rate or volume of runoff in a manner that would result in erosion, siltation, or flooding. Impacts would be less than significant.

\[d) \] Would the project create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems?

Urban development can impact stormwater runoff hydrology in several ways. Impervious surfaces, such as roads, sidewalks, and buildings prevent the natural infiltration of stormwater into the soil and thus create higher runoff volumes. In addition, more rapid transport of runoff over impermeable surfaces combined with higher runoff volumes can cause elevated peak flows. These increases in flow could exceed the capacity of storm drain systems.
The proposed project involves construction of a hotel on an existing developed property that currently discharges to the City’s storm drain system. Under existing conditions, the site is almost entirely covered with impervious surfaces. Because implementation of the proposed project would result in a decrease in the amount of impervious surfaces by 30,070 square feet), and the installation of twenty-one on-site bioretention areas, the potential for increased stormwater flow rates and volume is reduced. The bioretention areas will reduce the amount of runoff generated by the site through evapotranspiration and some amount of infiltration (depending on the soil type) before releasing the remainder of the runoff to the storm drain system. The bioretention areas will also reduce peak flow rates by holding the stormwater for a period of time before discharge to the storm drain system. Because the stormwater flow from the site will be reduced with the implementation of BMPs and LID measures, the impact to the storm drain system will be less than significant.

\textit{e)} Would the project provide substantial additional sources of polluted runoff, or otherwise substantially degrade water quality?

Pollutants commonly associated with construction sites that can impact stormwater are sediments, nutrients, trace metals, pesticides, oil, grease, fuels, and miscellaneous construction wastes. Pollutants generated from the operational phase of the project may include sediment, nutrients, organic compounds, trash and debris, oxygen-demanding substances, bacteria and viruses, oil and grease, and pesticides/herbicides.

As required by the City of Walnut Creek ordinances and Contra Costa County storm water management guidelines, Best Management Practices (BMPs) will be implemented across the project site during both construction and operation of the proposed project. These BMPs will control and prevent the release of sediment, debris, and other pollutants into the storm drain system. Implementation of BMPs during construction will be in accordance with the provisions of the SWPPP, which will minimize the release of sediment, soil, and other pollutants. Operational BMPs will be required to meet the C.3 provisions of the SMCWPPP and the City of Walnut Creek reviews projects for stormwater conformance with applicable laws, policies, and guidelines. These requirements include the incorporation of site design, source control, and treatment control measures to treat and control runoff before it enters the storm drain system. Two bioretention areas will be installed at the site that will reduce the volume and improve the quality of stormwater runoff from the site. With implementation of these BMPs in accordance with City and County requirements, the potential impact on water quality will be less than significant.

\textit{f)} Would the project place housing within a 100-year flood hazard area as mapped on a federal Flood Hazard Boundary or Flood Insurance Rate Map or other flood hazard delineation map?

The project site is outside of the 100-year flood hazard zones; and the proposed project does not include a housing component. Therefore, there would be no impact regarding the placement of housing within a 100-year floodplain.

\textit{g)} Would the project place within a 100-year flood hazard area structures which would impede or redirect flood flows?
The project site is not located within a 100-year floodplain as mapped by FEMA. Therefore, no structures would be located within a 100-year floodplain that could impede flood flows. No impact would occur.

h) Would the project expose people or structures to a significant risk of loss, injury or death involving flooding, including flooding as a result of the failure of a levee or dam?

The project site is not in a dam inundation zone, and proposed project development would not expose people or structures to hazards from dam inundation. The project site is not mapped in an area protected from 100-year floods by a levee. No impact would occur.

i) Would the project potentially be inundated by seiche, tsunami, or mudflow?

The project site is outside of a tsunami inundation zone. The project site is not susceptible to flooding due to a seiche or mudflow. Development of the proposed project would not place people or structures at risk from these types of flooding, and no impact would occur.

IX. LAND USE AND PLANNING

<table>
<thead>
<tr>
<th>Would the proposed project:</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation Incorporated</th>
<th>Less Than Significant</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Physically divide an established community?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>b) Conflict with any applicable land use plan, policy or regulation of an agency with jurisdiction over the project (including, but not limited to, the general plan, specific plan, local coastal program or zoning ordinance) adopted for the purpose of avoiding or mitigating an environmental effect?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>c) Conflict with any applicable habitat conservation plan or natural community conservation plan?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

EXISTING CONDITIONS

As shown on Figure 3-2, in Chapter 3, Project Description, the project site is located between car dealer parking to the south and commercial buildings to the west, Lawrence Way and BART tracks to the east, and Penniman Way and I-680 to the north. The project site is located within a developed area surrounded by auto dealerships, hotel and fast-food uses along Lawrence Way and North Main Street.
General Plan and Zoning

The project site is currently developed with surface parking and two structures, which are currently occupied and used for City administrative purposes. The project site has a General Plan land use designation of Auto Sales & Service (AS), a land use designation intended primarily for auto-related and auto-oriented uses. Uses in the AS land use designation is intended primarily for auto-related and auto-oriented uses, which generally include auto dealers, auto service and repair uses. Businesses not associated with auto sales, service, or repair are allowed only if they demonstrate their presence will have no adverse effect on the long-term viability of the AS designation. As discussed in Chapter 3, Project Description, the project is consistent with the existing land use category, such that the project requires no change to the General Plan designation.

The project site is zoned Auto Sales & Service (A-S). The A-S Zoning District is intended to provide a distinct commercial district which reserves land area primarily for auto dealers, auto service and other related auto oriented retail uses. The A-S zoning designation has a maximum building height of 35 feet and a maximum floor area ratio (FAR) of 1.0 and does not require a minimum setback on any lot lines.

Parking

Walnut Creek Municipal Code Title 10, Part III, Article 2, Off-Street Parking and Loading Regulations, states that 0.9 vehicular parking space per each guest room is required for hotel land uses. In addition, 10 percent of the total number of required vehicular parking spaces must be dedicated for bicycle parking. The total number of loading spaces required is determined by the City Transportation Administrator.

Trees

An Arborist Report prepared by HortScience, Inc. is included as Appendix H of this IS/MND. The proposed project would not remove any existing trees on the site that qualify as “Highly Protected Trees” under the City’s Tree Protection Ordinance, or any trees that qualify as a regulated Street Tree under the City’s Municipal Code. A total of two trees would be removed with development of the proposed project, and

69 The 35-foot maximum height permitted is consistent with the maximum height allowed under the Building Height Freeze Initiative of 1985, commonly known as ‘Measure A’.
70 The floor area ratio (FAR) is the ratio of the gross floor area of all buildings on a lot to the net lot area of the property.
71 City of Walnut Creek Municipal Code, Title 10, Zoning, Chapter 10-2.2.1002, Automobile Sales and Service District, Land Use Regulations.
72 City of Walnut Creek Municipal Code, Title 10, Zoning, Part III, Article 2, Off-Street Parking and Loading Regulations, Table A: Parking Regulations.
73 City of Walnut Creek Municipal Code, Title 10, Zoning, Part III, Article 2, Off-Street Parking and Loading Regulations, Section 10-2.3.202.G. Basic Requirements for Off-Street Parking and Loading, Bicycle Parking.
74 City of Walnut Creek Municipal Code, Title 10, Zoning, Part III, Article 2, Off-Street Parking and Loading Regulations, Table B, Loading Regulations.
the remaining 13 trees would be preserved. Walnut Creek Municipal Code Title 3, Chapter 8, Preservation of Trees on Private Property, known as the Tree Preservation Ordinance, states that a tree removal permit is required for removal of certain trees. Trees protected under this ordinance are defined in Section 3-8/02(h) and (j), as the following:

- Any live woody plant having a single perennial stem of 28 inches or more in circumference measured 4.5 feet above the natural grade;
- Any multi-stemmed perennial plant having an aggregate circumference of 40 inches or more measured 4.5 feet above the natural grade;
- Any multi-stemmed plant having one stem of 28 inches or more in circumference.

Additionally, removal of any Highly Protected Tree also requires a tree removal permit. Highly Protected Trees include the following native tree species that meet the size criteria set forth above: valley oak (*Quercus lobata*), blue oak (*Q. douglasii*), coast live oak (*Q. agrifolia*), California black oak (*Q. kelloggii*), canyon live oak (*Q. chrysolepis*), interior live oak (*Q. wislizenii var. wislizenii*), madrone (*Arbutus menziesii*), California buckeye (*Aesculus californica*), California black walnut (*Juglans hindsii*), and grey pine (*Pinus sabiniana*).

The removal and planting of street trees is regulated by Article 4, Street Trees, in Chapter 1, Encroachments, under Title 7, Public Works, of the Walnut Creek Municipal Code. A street tree is defined in Section 7-1.403 as any tree located within 6 feet from the back edge of the sidewalk, or if there is no sidewalk, within 11 feet from the curb line. The Municipal Code requires a permit for planting any street tree, and allows removal of street trees provided 1:1 replacement is provided. In addition, for projects requiring Design Review, section 7-1.405 provides that “the Design Review Commission shall review the type, size and location of street trees for new development as part of the design review plan proposed for the project. The Design Review Commission approval shall constitute the planting permit required under Section 7-1.404. Planting or re-planting of street trees must adhere to planting standards in the City’s Master Street Tree Planting Plan.” As shown on Figure 3-2, there are no street trees located on the project site.

DISCUSSION

a) *Would the project physically divide an established community?*
As described above, the project site is surrounded by commercial development. Development of the proposed project would occur on a site that is currently developed, would retain the existing roadway patterns, and would not introduce any new major roadways or other physical features through existing residential neighborhoods or other communities that would create new barriers. Accordingly, the project would not physically divide an established community. Therefore, no impact would occur and no mitigation measures would be required.

b) Would the project conflict with any applicable land use plan, policy or regulation of an agency with jurisdiction over the project (including, but not limited to, the general plan, specific plan, local coastal program or zoning ordinance) adopted for the purpose of avoiding or mitigating an environmental effect?

Construction of the proposed project would have a significant environmental impact if it would conflict with community goals as expressed in adopted plans, policies, or regulations. Accordingly, consistency between the proposed project and adopted regulations are evaluated here.

Walnut Creek 2025 General Plan

Construction of the proposed project would change the character of development on the project site from auto-related and oriented uses to commercial hotel use. As described in Chapter 3, Project Description, the Walnut Creek 2025 General Plan states “businesses not associated with auto sales, service, or repair are allowed only if they demonstrate their presence will have no adverse effect on the long-term viability of the AS designation.” Therefore, the standard for analysis used in this IS/MND is based on general agreement with the policy language and furtherance of the policy intent (as determined by a review of the policy context). A comparison of the proposed project’s characteristics with all applicable polices outlined in the General Plan 2025 as they relate to land use issues are presented in Table 4-7. As shown in Table 4-7 the proposed project would be consistent with these policies.

<table>
<thead>
<tr>
<th>Policy Number</th>
<th>Policy Text</th>
<th>Consistency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy 5.1</td>
<td>Require infill development to be compatible with adjacent and nearby uses.</td>
<td>Consistent. The proposed project includes a design theme intended to exhibit high-quality architecture, and provides amenities for project site users. The proposed project would involve the development of a four-story hotel with outdoor patio area, a fitness center, outdoor pool, and meeting rooms. The proposed project would include landscaping, and all exterior surface and above ground mounted lighting fixtures will be complementary to the architectural theme.</td>
</tr>
<tr>
<td>Policy 10.1</td>
<td>Support the development of medium- and high-density office, residential, and local-serving retail near and around the Walnut Creek and Pleasant Hill BART stations</td>
<td>Consistent. The proposed project would develop a 124-room hotel located 0.5 miles northeast of Walnut Creek Bay Area Rapid Transit District (BART) station, and 1 mile south of the Pleasant Hill Centre BART station in the central portion of Walnut Creek. The project would provide additional short-term visitor accommodations to complement</td>
</tr>
</tbody>
</table>
Table 4-7 City of Walnut Creek 2025 General Plan Policies Relevant to the Proposed Project

<table>
<thead>
<tr>
<th>Policy Number</th>
<th>Policy Text</th>
<th>Consistency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Core Area).</td>
<td>the surrounding commercial environment and to support the retail, restaurant and services in the nearby core area, located immediately south of the proposed project.</td>
</tr>
<tr>
<td>Action 10.1.1</td>
<td>Apply land use designations that encourage transit-oriented development around the BART stations and in the Core Area.</td>
<td>Consistent. The proposed project would develop a 124-room hotel located 0.5 miles northeast of the Walnut Creek BART station, and 1 mile south of the Pleasant Hill Centre BART station via several bus transit routes that serve the project site.</td>
</tr>
<tr>
<td>Policy 13.1</td>
<td>Maintain urban design and architectural standards for evaluating the scale, appearance, and compatibility of new development proposals.</td>
<td>Consistent. The proposed project incorporates a number of features meant to enhance the project site and its surroundings. As shown on Figure 3-5 in Chapter 3, Project Description, of this IS/MND, landscaped areas would be provided around the perimeter of the hotel development, the front of the hotel entrance, and around the pool terrace on the north portion of the project site.</td>
</tr>
</tbody>
</table>

Source: City of Walnut Creek 2025 General Plan, 2006.

Zoning Ordinance

Height and Setbacks

The proposed project would involve the construction of a four-story hotel in the A-S zoning district. The A-S district has a maximum building height, including any sign and design facades, of 35 feet and a maximum FAR of 1.0. The district does not require minimum setbacks. Hotels are not permitted in the A-S district. The hotel would not exceed 35 feet to the top of the roof line from the existing highest on-site grade, with up to 12 feet of additional height afforded for mechanical and other equipment, as permitted by the Zoning Ordinance. Perspective views of the site are shown on Sheet No. DR3.1 through Sheet No. DR3.2 in Appendix A of this IS/MND. With a proposed building area of approximately 72,964 square feet and a lot size of 98,515 square feet, the project would have a FAR of 0.76. The building would be setback would be over 10 feet from front and side lot lines. The project site requires a zoning amendment change from A-S to P-D to allow or infill development with higher density projects. With this zoning amendment, the proposed project would be consistent with zoning district regulations and would therefore be consistent with the zoning regulations. Accordingly, the impact would be less than significant.

Parking

The proposed project includes 124 hotel rooms and 113 vehicular parking spaces, and is therefore consistent with Walnut Creek Municipal Code Section 10-2.3.202, Basic Requirements for Off-Street Parking and Loading (.9 spaces per room). In addition, per Municipal Code Section 10-2.3.202G, Bicycle

75 City of Walnut Creek Municipal Code, Title 10, Zoning, Article 17, Planned Development District (P-D).
Parking, the proposed project includes six short-term bicycle parking spaces located outside of the public right-of-way and pedestrian walkways and within 50 feet of a main hotel entrance, as well as secure long-term bicycle parking spaces for employees and hotel guests located on the first floor of the hotel building. The proposed project would also include signage indicating the location of the bicycle parking. Accordingly, the proposed project would be consistent with the parking zoning for the site and the impact would be less than significant.

Tree Preservation Ordinance

As discussed in the Existing Conditions section above, the site contains 15 trees and proposes to remove a total of two. None of the two trees proposed to be removed qualify as highly protected tree. Mandatory compliance with the City’s Tree Preservation Ordinance and a Tree Removal Permit would ensure consistency with this ordinance. Accordingly, the proposed project would be consistent with the tree preservation ordinance and the impact would be less than significant.

c) *Would the project conflict with any applicable habitat conservation plan or natural community conservation plan?*

The project site is not in the planning area of a Natural Community Conservation Plan or Habitat Conservation Plan. The habitat preserve nearest to the project site is the East Contra Costa County Conservation Plan/Natural Community Conservation Plan (HCP/NCCP), located approximately 10 miles to the northeast. Accordingly, there would be no impact.

X. NOISE

<table>
<thead>
<tr>
<th>Would the proposed project:</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation Incorporated</th>
<th>Less Than Significant</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Expose people to or generate noise levels in excess of standards established in the local general plan or noise ordinance, or other applicable standards?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>b) Expose people to or generate excessive groundborne vibration or ground borne noise levels?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>c) Create a substantial permanent increase in ambient noise levels in the project vicinity above levels existing without the project?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

Would the proposed project:

<table>
<thead>
<tr>
<th>Would the proposed project:</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant Impact With Mitigation Incorporated</th>
<th>Less Than Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>d) Create a substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project?</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>e) For a project located within an airport land use plan or, where such a plan has not been adopted, within 2 miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>f) For a project within the vicinity of a private airstrip, would the project expose people residing or working in the project area to excessive noise levels?</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
</tbody>
</table>

EXISTING CONDITIONS

Noise is defined as unwanted sound and is known to have several adverse effects on people, including hearing loss, speech and sleep interference, physiological responses, and annoyance. Based on these known adverse effects of noise, the federal, state, and city governments have established criteria to protect public health and safety and to prevent the disruption of certain human activities, such as classroom instruction, communication, or sleep. Additional information on noise and vibration fundamentals, existing regulations, and pertinent technical standards, project-specific background information, construction effects calculation worksheets, and project-generated traffic operations noise modeling results are contained in Appendix G of this IS/MND.

As shown on Figure 3-2, in Chapter 3, Project Description, the proposed project site is currently developed with surface parking and two structures that are currently used for City administrative purposes. Additionally, the City temporarily leases approximately 12,000 square feet of area in the southern portion of the proposed project site for automobile inventory storage. Existing noise generation at the proposed project site includes noise from loading/unloading of materials, on-site vehicle noise from automobile storage, and roadway noise from vehicle trips to and from the site.

The project site is surrounded by several transportation noise sources, including Lawrence Way and a BART rail line to the east, Penniman Way and an I-680 off-ramp to the north, and Main Street and the I-680 freeway to the west. Other transportation noise sources such as Parkside Drive to the south and commercial noise sources such as the adjacent auto dealerships (i.e., auto maintenance noise) may also contribute to the existing noise environment at the proposed project site.
The Walnut Creek General Plan Noise Element provides noise level measurements for various transportation noise sources within the City. The noise level in a typical location 250 feet from the center of I-680 ranges from 78 to 80 dBA \(L_{dn} \) (Main Street is elevated above I-680, which causes a barrier effect; this is expected to reduce noise from I-680 by approximately 5 dB in terms of the proposed project site). Along most of the city’s major and noteworthy streets (such as Main Street), the measured roadside noise level ranged from 60 to 70 dBA \(L_{dn} \). Noise levels generated by BART rail lines were measured to be 66 dBA \(L_{dn} \) at 80 feet from the BART tracks.

The proposed project site is approximately 500 feet from the I-680 centerline; approximately 275 feet from the Main Street centerline; and approximately 200 feet from the center of the adjacent BART rail line. Accounting for distance attenuation (i.e., 3 dB per doubling of distance for a line source, while ignoring other sound propagation effects such as intervening structures and ground effects), transportation noise levels in terms of the proposed project site are estimated to be 72 dBA \(L_{dn} \), 58 dBA \(L_{dn} \), and 62 dBA \(L_{dn} \) from I-680, Main Street, and the adjacent BART line, respectively. The total, combined noise level at the proposed project site in terms of these three transportation noise sources is estimated to be 73 dBA \(L_{dn} \). The estimated noise environment at the proposed project site is relatively loud in terms of a typical mixed-use commercial area.

With respect to noise-sensitive receptors in the vicinity of the proposed project development, the Main Chance Estates (multi-family residences) are approximately 350 feet to the east of the proposed project site, the Motel 6 is approximately 350 feet to the west, the Windsor Apartment Homes are approximately 400 feet to the southwest, and the Walnut Creek Marriott Hotel is approximately 550 feet to the southwest of the proposed project site. Additionally, there are two commercial auto dealerships directly to the west and to the south of the proposed project site. These car dealerships are not noise-sensitive but will nonetheless be included in the noise impact discussion below.

Terminology and Noise Descriptors

The following are brief definitions of terminology used in this section:

- **Sound.** A disturbance created by a vibrating object, which, when transmitted by pressure waves through a medium such as air, is capable of being detected by a receiving mechanism, such as the human ear or a microphone.

- **Noise.** Sound that is loud, unpleasant, unexpected, or otherwise undesirable.

- **Intrusive.** Noise that intrudes over and above the existing ambient noise at a given location. Relative intrusiveness depends on amplitude, duration, frequency, time of occurrence, and tonal or informational content, as well as the prevailing ambient noise level.

77 City of Walnut Creek, *General Plan 2025*, adopted 2006, Noise Element.

78 Measurement was performed along Minert Street, but is assumed to be similar to the BART line adjacent to the proposed project site.
- **Decibel (dB)**. A unit-less measure of sound on a logarithmic scale.

- **A-Weighted Decibel (dBA)**. An overall frequency-weighted sound level in decibels that approximates the frequency response of the human ear.

- **Ambient Noise Level**. The composite of noise from all sources near and far. The normal or existing level of environmental noise at a given location.

- **Equivalent Continuous Noise Level (Leq)**. The mean of the noise level (or energy) averaged over the measurement period.

- **Statistical Sound Level (Ln)**. The sound level that is exceeded “n” percent of time during a given sample period. For example, the L50 level is the statistical indicator of the time-varying noise signal that is exceeded 50 percent of the time (during each sampling period); that is, half of the sampling time, the changing noise levels are above this value and half of the time they are below it. This is called the “median sound level.” The L10 level, likewise, is the value that is exceeded 10 percent of the time (i.e., near the maximum) and this is often known as the “intrusive sound level.” The L90 is the sound level exceeded 90 percent of the time and is often considered the “effective background level” or “residual noise level.”

- **Day-Night Sound Level (Ldn or DNL)**. The energy-average of the A-weighted sound levels occurring during a 24-hour period, with 10 dB added to the sound levels occurring during the period from 10:00 p.m. to 7:00 a.m.

- **Community Noise Equivalent Level (CNEL)**. The energy-average of the A-weighted sound levels occurring during a 24-hour period, with 5 dB added to the levels occurring during the period from 7:00 p.m. to 10:00 p.m. and 10 dB added to the sound levels occurring during the period from 10:00 p.m. to 7:00 a.m. Note that for general community/environmental noise, CNEL and Ldn values rarely differ by more than 1 dB. As a matter of practice then, Ldn and CNEL values are considered to be equivalent/interchangeable and are treated as such in this assessment.

DISCUSSION

a) **Would the project expose people to or generate noise levels in excess of standards established in the local general plan or noise ordinance, or other applicable standards?**

This section includes a discussion of potential noise impacts from proposed project-related traffic and stationary source noise, and evaluates impacts of the proposed project in terms of land use and noise compatibility.

Mobile-Source Noise

With respect to projected-related increases, noise impacts can be broken down into three categories. The first is “audible” impacts, which refer to increases in noise level that are perceptible to humans. Audible increases in general community noise levels generally refer to a change of 3 dB or more since this level
has been found to be the threshold of perceptibility in exterior environments. The second category, “potentially audible” impacts, refers to a change in noise level between 1 and 3 dB. The last category includes changes in noise level of less than 1 dB that are typically “inaudible” to the human ear except under quiet conditions in controlled environments. Only “audible” changes in noise levels at sensitive receptor locations (i.e., 3 dB or more) are considered potentially significant. Note that a doubling of traffic flows (i.e., 10,000 vehicles per day to 20,000 per day) would be needed to create a 3 dB increase in traffic-generated noise levels. An increase of 3 dB is often used as a threshold for a substantial increase.

The traffic impact analysis for the proposed project shows that the proposed hotel development is expected to add approximately 1,013 daily vehicle trips to the study area at full buildout. All people driving to the proposed project site will access the site from Lawrence Way. The project-related vehicle trips were used in the traffic study to estimate the increases in peak-period traffic flows at intersections around the proposed project site. The representative peak-period selected for analysis in this noise study was the weekday PM peak period (i.e., 4:00 p.m. to 6:00 p.m.).

To assess the potential for mobile-source noise impacts from these traffic flows, it is necessary to determine the noise currently generated by vehicles traveling through the project area. Average daily traffic (ADT) volumes were based on data provided by TJKM. Based on the FHWA’s roadway noise calculation method, 24 different roadway segments were evaluated for project-related traffic noise impacts, as shown in Table 4-8. Noise levels at segments of Lawrence Way, Penniman Way, Parkside Drive, Main Street, I-680 Ramps, and other nearby arterials were analyzed with respect to both existing traffic conditions and to full build-out (i.e., 2035) conditions. These values were compared and a noise level increase of 3 dB or more would signify a potential impact.

81 The traffic noise analysis used PM peak hour intersection turning movements to derive average daily traffic volumes.
<table>
<thead>
<tr>
<th>Roadway</th>
<th>Segment</th>
<th>CNEL at 50 Feet (dBA)</th>
<th>Overall Increase (dB)</th>
<th>Potential Impact?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Existing</td>
<td>2035 With Project</td>
<td></td>
</tr>
<tr>
<td>I-680 On-Ramp</td>
<td>North of Penniman Way</td>
<td>n/a</td>
<td>n/a</td>
<td>0.6</td>
</tr>
<tr>
<td>Lawrence Way</td>
<td>South of Penniman Way</td>
<td>67.1</td>
<td>67.8</td>
<td>0.7</td>
</tr>
<tr>
<td>Penniman Way</td>
<td>Between I-680 Off-Ramp and Lawrence Wy</td>
<td>n/a</td>
<td>n/a</td>
<td>0.5</td>
</tr>
<tr>
<td>Lawrence Way</td>
<td>North of Parkside Dr</td>
<td>61.6</td>
<td>62.5</td>
<td>0.9</td>
</tr>
<tr>
<td>Parkside Drive</td>
<td>Between Main St and Lawrence Wy</td>
<td>66.1</td>
<td>67.4</td>
<td>1.2</td>
</tr>
<tr>
<td>Parkside Drive</td>
<td>Between Lawrence Way and Jones Rd</td>
<td>66.7</td>
<td>67.3</td>
<td>0.6</td>
</tr>
<tr>
<td>Main Street</td>
<td>Between Kazebeer Rd and Parkside Dr</td>
<td>69.9</td>
<td>70.6</td>
<td>0.7</td>
</tr>
<tr>
<td>Parkside Drive</td>
<td>Between Riviera Ave and Main St</td>
<td>62.6</td>
<td>63.4</td>
<td>0.7</td>
</tr>
<tr>
<td>Main Street</td>
<td>Between Parkside Dr and Pine St</td>
<td>69.0</td>
<td>69.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Main Street</td>
<td>North of San Luis Rd</td>
<td>68.0</td>
<td>68.6</td>
<td>0.6</td>
</tr>
<tr>
<td>San Luis Road</td>
<td>Between I-680 Off-Ramp and Main St</td>
<td>n/a</td>
<td>n/a</td>
<td>0.7</td>
</tr>
<tr>
<td>Main Street</td>
<td>Between San Luis Rd and I-680 Off-Ramp</td>
<td>67.7</td>
<td>68.3</td>
<td>0.7</td>
</tr>
<tr>
<td>Main Street</td>
<td>Between I-680 Off-Ramp and Penniman Wy</td>
<td>69.7</td>
<td>70.4</td>
<td>0.7</td>
</tr>
<tr>
<td>Penniman Way</td>
<td>Between Main St and I-680 Off-ramp</td>
<td>n/a</td>
<td>n/a</td>
<td>0.8</td>
</tr>
<tr>
<td>Main Street</td>
<td>Between Penniman Way and Kazebeer Rd</td>
<td>70.1</td>
<td>70.7</td>
<td>0.5</td>
</tr>
<tr>
<td>San Luis Road</td>
<td>West of I-680 On-Ramp</td>
<td>n/a</td>
<td>n/a</td>
<td>0.6</td>
</tr>
<tr>
<td>I-680 Ramps</td>
<td>South of San Luis</td>
<td>n/a</td>
<td>n/a</td>
<td>0.7</td>
</tr>
<tr>
<td>Jones Road</td>
<td>North of Parkside Dr</td>
<td>62.6</td>
<td>63.2</td>
<td>0.6</td>
</tr>
<tr>
<td>Parkside Drive</td>
<td>Between Jones Rd and Broadway</td>
<td>65.7</td>
<td>66.4</td>
<td>0.6</td>
</tr>
<tr>
<td>Broadway</td>
<td>Between Parkside Dr and Pine St</td>
<td>n/a</td>
<td>n/a</td>
<td>0.7</td>
</tr>
<tr>
<td>Parkside Drive</td>
<td>Between Broadway and Pimlico Dr</td>
<td>64.5</td>
<td>66.4</td>
<td>1.9</td>
</tr>
<tr>
<td>Civic Drive</td>
<td>North of Parkside Dr</td>
<td>68.7</td>
<td>69.3</td>
<td>0.6</td>
</tr>
<tr>
<td>Parkside Drive</td>
<td>Between Pimlico Dr and Civic Dr</td>
<td>64.4</td>
<td>64.9</td>
<td>0.5</td>
</tr>
<tr>
<td>Civic Drive</td>
<td>South of Parkside Dr</td>
<td>68.8</td>
<td>69.4</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Notes: Levels calculated by FHWA-RD77-108 Calculation Method with details included in Appendix I.
For segments that list “n/a”, average daily traffic was too low to estimate ambient noise conditions; thus, only the overall decibel increase was estimated using the ratios of the before and after traffic flow rates (holding other, noise-related variables constant).
The results of this modeling indicate that average noise levels along arterial segments currently range from approximately 62 dBA to 70 dBA CNEL as calculated at a distance of 50 feet from the centerline of the road. As shown in Table 4-8, the worst-case roadway noise increase will result from traffic increases on Parkside Drive between Broadway and Pimlico Drive, wherein the predicted roadway noise increase is approximately 2 dB. All increases in noise levels at road segments in the vicinity of the project site including on Parkside Drive would fall below the threshold of human perceptibility. Thus, it is not anticipated that implementation of the proposed project would result in audible increases in traffic-related noise along the surrounding roadways. As a result, exposure of persons to noise levels in excess of established thresholds from project-related roadway noise would be less than significant.

Construction Noise

The City of Walnut Creek Municipal Code Section 4-6.203, *Prohibited Noises Enumerated*, sub-section (f), establishes that the erection, construction, demolition, alteration or repair of any building, structure or residence that requires a permit, or the excavation of any earth, fill, streets or highways that requires a grading permit, shall be conducted between the hours of 7:00 a.m. and 6:00 p.m. on weekdays which are not holidays (or those precise hours of operation enumerated in individual building and grading permits). Other than these time-of-day constraints, the Municipal Code does not include numerical sound level limits for construction activity noise production. A construction-specific vibration assessment is provided in impact item b) below, while a construction noise assessment is provided in impact item d) below.

Stationary-Source Noise

A significant stationary-source impact would occur if the activities or equipment at the proposed project site produce noise levels at nearby sensitive receptors in excess of local standards. According to the City of Walnut Creek Municipal Code Section 4-6.204, *Loud Noises Prohibited*, no person shall make, continue, or cause to be made or continued, any loud, excessive or unreasonable noise or sound within the limits of the City. The Municipal Code does not include numerical sound level limits for on-going stationary-source noises. Municipal Code Section 4-6.208, *Abatement of Noise as Nuisances*, establishes that the Chief of Police, the Community Development Director, or his or her designees, are responsible for abating public nuisance noise.

The proposed hotel facility would include new stationary noise at the proposed project site, including heating, ventilation, and air conditioning units, landscaping equipment noise, and common area/pool area noise. The nearest sensitive receptors would be the Main Chance Estates (multi-family residences) approximately 350 feet to the east of the proposed project site, and the Motel 6 approximately 350 feet to the west of the proposed project site. However, the elevated BART rail line to the east and the existing auto dealership to the west would shield much of the ground-level project-generated stationary noise in terms of the Main Chance Estates and the Motel 6, respectively.

Heating, ventilation, and air conditioning equipment on top of the proposed hotel building would be similar to such equipment being used at the buildings surrounding the proposed project site. Additionally,
this equipment would be expected to be placed within appropriate sound enclosures or parapets that would substantially reduce mechanical equipment noise in terms of nearby sensitive receptors. Noise generation from people using the common area/pool area would be limited to people talking and/or children playing. Additionally, noise associated with use of the common area/pool area would be limited to daytime hours, as these common spaces are expected to be closed during evenings and overnight.

As mentioned above, the noise environment surrounding the project site is estimated to be 73 dBA \(L_{dn}\). Stationary noise associated with the proposed project in terms of the nearest sensitive receptors is expected to be well below the existing ambient noise environment. Due to the low-level characteristics of the project-related stationary noise sources, the distances between the project site and the nearest sensitive receptors (i.e., at least 350 feet), the intervening structures between the project site and nearest sensitive receptors, and the relatively noisy existing noise environment, stationary noise associated with the proposed project is not expected to contribute to the total noise environment within the project vicinity.

In summary, noise generated by normal operations would not be notably different than existing conditions in and around the proposed area of improvements and would not exceed the City’s exterior noise standards for generating noise nuisances. Therefore, no significant permanent noise increases due to project-related activities would occur and no mitigation measures are necessary.

Overall, impacts as a result of the proposed project would be less than significant with respect to exposure or persons to or generation of noise levels in excess of standards established in the Walnut Creek General Plan or noise ordinance, or applicable standards of other agencies.

b) Would the project expose people to or generate excessive groundborne vibration or ground borne noise levels?

The City has not identified or adopted vibration standards. In lieu of such local standards, the Federal Transit Administration (FTA) provides guidelines for maximum acceptable levels of ground-borne vibration for different land use types.\(^8\) Vibration impacts are quantified both in terms of annoyance and architectural damage due to vibration. For vibration annoyance, 78 VdB is considered the maximum vibration level for residential land uses; 84 VdB is considered the maximum vibration level for commercial land uses.

For architectural damage due to vibration, a Peak Particle Velocity (PPV) of 0.2 is considered the maximum vibration level for non-engineered timber and masonry buildings (typically applied to residential structures); a Peak Particle Velocity (PPV) of 0.3 is considered the maximum vibration level for engineered concrete and masonry buildings (typically applied to commercial structures). In the absence of local

standards or regulations, these FTA guidelines provide the basis for determining the impact significance of potential project-related vibration impacts.

On-going Operations Vibration Impacts

For potential project-generated vibration impacts to nearby receptors, the project would not include equipment that could generate substantial levels of long-term groundborne vibration levels. Therefore, vibration from on-site project sources would not be significant, and no mitigation measures are necessary. No further evaluation of on-going vibration impacts would be required.

Short-Term Construction Vibration Impacts

The City of Walnut Creek Municipal Code Section 4-6.203.f, *Prohibited Noises Enumerated*, limits noise generating construction activities to the daytime hours of 7:00 a.m. to 6:00 p.m. This section also prohibits construction activities on weekends and federal holidays.

Receptor buildings adjacent to and within proximity of the proposed project site could be exposed to the generation of excessive ground-borne vibration levels from project-related construction activities. Construction activities can result in varying degrees of ground vibration, depending on the equipment and methods used, distance to the affected structures, and soil type. Construction activities that are expected to generate low levels of ground-borne vibration include demolition, site preparation, grading, and building construction.

Nearby receptors that would potentially be affected by project-related vibration include the car dealerships to the west and south, the Main Chance Estates (multi-family residences) to the east, and the Motel 6 to the west of the proposed project site. Ground-borne vibration levels associated with various types of typical construction equipment were estimated by the FTA and are provided in Table 4-9.83

Table 4-9 Typical Vibration Levels Produced by Common Construction Equipment

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Peak Particle Velocity in Inches per Second (in/sec) at 25 Feet</th>
<th>Vibration Level in Vibration Decibels (VdB) at 25 Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vibratory Roller</td>
<td>0.210</td>
<td>94</td>
</tr>
<tr>
<td>Large Bulldozer</td>
<td>0.089</td>
<td>87</td>
</tr>
<tr>
<td>Loaded Trucks</td>
<td>0.076</td>
<td>86</td>
</tr>
<tr>
<td>Jackhammer</td>
<td>0.035</td>
<td>79</td>
</tr>
<tr>
<td>Small Bulldozer</td>
<td>0.003</td>
<td>58</td>
</tr>
</tbody>
</table>

Using the reference vibration levels shown in Table 4-9, ground-borne vibration levels from project-related construction activities were estimated for the equipment that is anticipated to be used for the project. These results were compared to the construction vibration assessment guidelines published by the FTA (i.e., vibration limits of 78 VdB for residential uses and 84 VdB for commercial uses); the vibration impacts associated with the proposed project were estimated.

Construction Vibration – Annoyance

Construction activities are typically distributed throughout the project site and would only occur for a relatively limited duration. Therefore, to represent the average vibration level for vibration-annoyance, distances are measured from the center of the construction site to the nearest receptor location. These vibration annoyance results are shown in Table 4-10.

Table 4-10
Construction Equipment Vibration Levels

<table>
<thead>
<tr>
<th>Equipment Item</th>
<th>Vibration Annoyance: a Receiver Vibration Levels (VdB)</th>
<th>Vibration Damage: b Receiver Vibration Peak Particle Velocity (inches/second)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Main Chance Estates 350 Feet to East</td>
<td>Motel 6 350 Feet to West</td>
</tr>
<tr>
<td>Vibratory Roller</td>
<td>59.6</td>
<td>59.6</td>
</tr>
<tr>
<td>Large Bulldozer</td>
<td>52.6</td>
<td>52.6</td>
</tr>
<tr>
<td>Loaded Trucks</td>
<td>51.6</td>
<td>51.6</td>
</tr>
<tr>
<td>Jackhammer</td>
<td>44.6</td>
<td>44.6</td>
</tr>
<tr>
<td>Small Bulldozer</td>
<td>23.6</td>
<td>23.6</td>
</tr>
</tbody>
</table>

a. Based on the Vibration Source Levels of Construction Equipment included in Table 4-9.
b. Distances are from the center of the overall construction zone to the nearest receptor building within each land use type.
c. Distances are from the nearest portion of potential construction activity to the nearest receptor building within each land use type.

Source: PlaceWorks, 2017.
Based on the reference vibration levels provided by FTA, a vibratory roller generates a vibration level of 94 VdB at a distance of 25 feet (see Table 4-8). As shown in Table 4-10, at average distances ranging from 55 to 400 feet from the project site, construction vibration levels are expected to range from 21.9 to 83.7 VdB. Thus, the proposed project’s construction phase would not use equipment, facilities, or activities that would result in a perceptible human response (annoyance), since it would not generate vibration levels that exceed the FTA maximum acceptable vibration standard for each respective land use category (i.e., 78 VdB for residential uses; 84 VdB for commercial uses).

Construction Vibration - Architectural Damage

Since architectural damage from construction vibration sources can be a one-time event and since such damage is dependent on the soil type, ground strata, and receptor building construction, vibration-damage distances are measured from the construction boundary to the façade of the nearest receptor building. Based on the reference vibration levels provided by FTA, a vibratory roller generates a Peak Particle Velocity (PPV) of 0.210 in/sec at a distance of 25 feet (see Table 4-8). As shown in Table 4-10, at worst-case distances ranging from 35 to 210 feet from the project site, vibration PPV values are expected to range from <0.000 to 0.127 in/sec. The proposed project would not result in vibration impacts that would exceed the FTA maximum acceptable PPV vibration standard for each respective land use category (i.e., 0.20 in/sec for residential uses; 0.30 in/sec for commercial uses), and would therefore not result in architectural damage due to vibration at any nearby receptors.

Further, project-related construction activities would be restricted to weekday daytime hours (7:00 a.m. to 6:00 p.m.) consistent with Section 4-6.203 of the City’s Municipal Code (not including holidays), thereby eliminating potential vibration impacts during the sensitive nighttime hours (6:00 p.m. and 7:00 a.m.). Therefore, the proposed project is not anticipated to result in the exposure of persons or structures to, or generation of, excessive ground-borne vibration; during either construction or on-going operations of the project. All vibration impacts would be less than significant and no mitigation is needed.

c) **Would the project create a substantial permanent increase in ambient noise levels in the project vicinity above levels existing without the project?**

As discussed above in Impact Assessment item a), it is concluded that the potential for noise increases in terms of project operation—both with regard to stationary sources and for project-induced traffic flow changes—would be less than significant and no mitigation would be required. Thus, impacts due to increases in the ambient noise level would be less than significant.

d) **Would the project create a substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project?**

The City of Walnut Creek Municipal Code does not include numerical limits on construction-related noise. However, Section 4-6.203 of the Municipal Code does limit construction to the daytime hours of 7:00 a.m. to 6:00 p.m. This section also prohibits construction activities on weekends and federal holidays.
Noise generated during construction is based on the type of equipment used, the location of the equipment relative to sensitive receptors, and the timing and duration of the noise-generating activities.

Two types of short-term noise impacts could occur during construction: (1) off-site, mobile-source noise from transport of workers, material deliveries, and debris and soil haul and (2) on-site, stationary-source noise from use of heavy construction equipment. Existing uses surrounding the project site would be exposed to construction noise, but the associated community noise levels may not necessarily result in significant temporary noise impacts.

Construction Vehicles Noise

The transport of workers and equipment to the construction site would incrementally increase noise levels along site access roadways. The worst-case flow of construction-related trips is assumed to occur during the demolition haul phase. There is expected to be 39 total trip ends over the two-day demolition haul phase, which equates to approximately 20 truck trips per day. Although this number of construction-related vehicle trips would minimally increase total daily vehicle flows along Lawrence Way, these vehicle trips would be negligible compared to the existing vehicle flows along Lawrence Way, which has average daily traffic volume of approximately 14,630.\(^{84}\) This incremental addition would be expected to add much less than 1 dB to the existing traffic-related noise environment. As such, increases in traffic flows due to construction vehicles will not contribute to the overall ambient noise level along nearby roadways. Other phases of construction are anticipated to have fewer daily trips (for the aggregate of workers plus vendors plus haul-offs) and these phases would have even less of an incremental difference in noise levels along construction trip routes than the worst-case demolition haul phase.

Individual construction vehicle pass-bys may create momentary noise levels of up to approximately 85 dBA (L\(_{\text{max}}\)) at 50 feet from the vehicle, but these occurrences would generally be infrequent (i.e., approximately once every 30 minutes, on average) and short lived (i.e., less than 1 minute in duration). Therefore, noise impacts from construction vehicles would be less than significant.

Construction Equipment Noise

Noise generated by on-site construction equipment is based on the type of equipment used, its location relative to sensitive receptors, and the timing and duration of noise-generating activities. Each stage of construction involves different kinds of equipment and has distinct noise characteristics. Noise levels from construction activities are typically dominated by the loudest piece of equipment. The dominant equipment noise source is typically the engine, although work-piece noise (such as dropping of materials) can also be noticeable.

The noise produced at each construction stage is determined by combining the noise level contributions (typically given in L\(_{\text{eq}}\)) from each piece of equipment used at a given time, while accounting for the on-
going time-variations of noise emissions (commonly referred to as the usage factor). Heavy equipment, such as a dozer or a loader, can have maximum, short-duration noise levels in excess of 80 to 85 dBA at 50 feet. However, overall noise emissions vary considerably, depending on what specific activity is being performed at any given moment. Noise attenuation due to distance, the number and type of equipment, and the load and power requirements to accomplish tasks during each construction phase would result in different noise levels from construction activities at a given sensitive receptor. Noise from construction equipment may be intermittent and diminishes at a rate of at least 6 dB per doubling of distance (conservatively ignoring other attenuation effects from air absorption, ground effects, and/or shielding/scattering effects). Average noise levels at noise-sensitive receptors could vary considerably, because mobile construction equipment would move around the site with different loads and power requirements.

Using information provided by the City and methodologies and inputs employed in the air quality assessment, the expected construction equipment mix was estimated and categorized by construction activity.

The most noise sensitive receptors surrounding the proposed project site include the Main Chance Estates (multi-family residences) approximately 350 feet to the east of the proposed project site, the Motel 6 approximately 350 feet to the west of the proposed project site, the Windsor Apartment Homes approximately 400 feet to the southwest of the proposed project site, and the Walnut Creek Marriott Hotel approximately 550 feet to the southwest of the proposed project site. Additionally, there are two commercial auto dealerships directly to the west and to the south of the proposed project site that are not noise sensitive, but will nonetheless be included in the construction noise analysis below. It is further noted that the Main Chance Estates will be partially shielded from construction activities by the elevated BART rail line to the east. Likewise, the Motel 6 will be partially shielded from construction activities by the auto dealership building to the west; a barrier attenuation of minus 3 dB was provided for these two receptors.85

Noise levels from project-related construction activities were calculated based on the simultaneous use of all applicable construction equipment. Distances to the nearest receptor locations were measured from the center of the proposed construction area to the property line of the nearest receptors. Although construction may occur across the entire project site, the area around the center of the site best represents the potential average construction-related noise levels. The associated, aggregate sound levels—grouped by construction activity—are summarized in Table 4-11.

Construction activities would increase noise levels at and near the proposed area of improvements. The highest expected construction-related noise levels—up to approximately 82 dBA L_{eq}—would occur during the grading phase at the Auto Dealership to the west; however, this land use is generally considered non-noise sensitive. The highest expected noise level at a noise-sensitive use—the Windsor Apartments—

would be up to 64 dBA L_{eq} during the grading period.86 However, since the building construction phase would be the longest duration, building construction is expected to be most disruptive in terms of nearby sensitive receptors.

86 Note that although the Main Chance Estates and the Motel 6 are closer to the proposed project site than the Windsor Apartments, these receptors would not have a direct line of site to project construction activities.
TABLE 4-11

PROJECT-RELATED CONSTRUCTION NOISE, ENERGY-AVERAGE (L\text{eq}) SOUND LEVELS, dBA

<table>
<thead>
<tr>
<th>Construction Activity Phase</th>
<th>Duration</th>
<th>Sound Level at Various Distances from Construction Activities, dBA L\text{eq}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demolition</td>
<td>9/1/18 - 9/7/18</td>
<td>Main Chance Estates (350 Feet East) 60, Motel 6 (350 Feet West) 57, Windsor Apartments (400 Feet SW) 77, Marriott Hotel (550 Feet SW) 77, Auto Dealership (55 Feet West) 77, Auto Dealership (400 Feet South) 60</td>
</tr>
<tr>
<td>Site Preparation</td>
<td>9/8/18 - 10/5/18</td>
<td>56, 56, 58, 58, 76, 76, 58</td>
</tr>
<tr>
<td>Grading</td>
<td>10/6/18 - 11/9/18</td>
<td>62, 62, 64, 62, 82, 82, 64</td>
</tr>
<tr>
<td>Utility Trenching</td>
<td>11/10/18 - 12/17/18</td>
<td>55, 55, 57, 54, 74, 74, 57</td>
</tr>
<tr>
<td>Building Construction</td>
<td>12/8/18 - 1/31/20</td>
<td>62, 62, 63, 61, 81, 81, 63</td>
</tr>
<tr>
<td>Paving</td>
<td>2/1/20 - 2/14/20</td>
<td>58, 58, 60, 58, 78, 78, 60</td>
</tr>
<tr>
<td>Architectural Coating</td>
<td>2/15/20 - 3/13/20</td>
<td>53, 53, 54, 52, 72, 72, 54</td>
</tr>
</tbody>
</table>

Notes: Calculations performed with the FHWA’s RCNM software and included in the Appendix I.

a. A 3 dB reduction was applied to the Main Chance Estates and the Motel 6, for barrier attenuation from the elevated BART tracks, and the Auto Dealership building, respectively.

As described above, the noise environment surrounding the project site is estimated to be 73 dBA L\text{dn} (based on the noise measurement data provided in the Walnut Creek General Plan).\(^{87}\) Thus, short-term and intermittent construction noise levels could sporadically increase the total noise environment at the nearest non-noise sensitive receptor (the Auto Dealership to the north). However, at the most noise-sensitive receptors, project-related construction noise levels are expected to be well below the existing noise environment. Though project-related construction noise levels may, at times, be audible at the nearest noise-sensitive receptors, construction noise is not expected to contribute to the total ambient noise environment. Further, since all construction would occur during the City of Walnut Creek’s allowable hours of construction, and since audible noise levels in terms of the nearest noise-sensitive receptors would be sporadic and intermittent, impacts at the nearest sensitive receptors would be *less than significant* and no mitigation measures are necessary.

e) *For a project located within an airport land use plan or, where such a plan has not been adopted, within 2 miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?*

\(^{87}\) City of Walnut Creek, April 4, 2006. General Plan 2025, adopted 2006, Noise Element.
The nearest public airports to the proposed project site are Buchanan Field, located over 5 miles to the north, and Oakland International Airport (OAK) located approximately 16 miles to the southwest. While operations at these airports may, at times, be audible at the site, the distances between them and the project site would result in negligible amounts of community noise at the proposed hotel facility. As such, development of the project would not expose people on-site to excessive noise levels from aircraft approaching or departing these public airport facilities; this impact would be less than significant, and no mitigation measures are necessary.

f) For a project within the vicinity of a private airstrip, would the project expose people residing or working in the project area to excessive noise levels?

The only private aircraft facility within 2 miles of the proposed project site is the John Muir Walnut Creek Medical Center Heliport, located about 1¼ mile to the east. While operations at this private heliport facility may, at times, be audible at the site, the relatively limited and sporadic use of this heliport for medical emergencies or other limited uses, coupled with the distances between them and the project site, would result in negligible amounts of community noise at the proposed hotel facility. As such, development of the project would not expose people on-site to excessive noise levels from aircraft approaching or departing private aircraft facilities and no impact would occur.

XI. POPULATION AND HOUSING

<table>
<thead>
<tr>
<th>Would the proposed project:</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation Incorporated</th>
<th>Less Than Significant No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Induce substantial unexpected population growth or growth for which inadequate planning has occurred, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure)?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>b) Displace substantial numbers of existing housing units, necessitating the construction of replacement housing elsewhere?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>c) Displace substantial numbers of people, necessitating the construction of replacement housing elsewhere?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>
EXISTING CONDITIONS

There is no population on-site, as the site is developed with commercial uses. Applying a generation rate of 1 job to 450 square feet for commercial land uses to the existing 8,488 square feet commercial building on the project site, the existing development could generate up to approximately 18 jobs.

DISCUSSION

a) Would the project induce substantial unexpected population growth or growth for which inadequate planning has occurred, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure)?

The proposed project would result in a substantial and unplanned level of growth if estimated development exceeds local or regional growth projections. The project site is designated A-S on the General Plan 2025 Land Use Map and zoned A-S on the Walnut Creek Zoning Map. The proposed project would require a Zoning Ordinance Amendment from A-S to Planned Development (P-D) to accommodate the hotel use. The proposed project includes the development of a hotel. Persons staying temporarily in a place are not considered permanent residents. Thus, the proposed project would not directly increase permanent population through guests at the hotel. In addition, the proposed project is not a regionally significant employer and it is anticipated that future employees of the proposed project would come from Walnut Creek and the surrounding Bay Area communities. As described in Chapter 3, Project Description, of this IS/MND, the operation of the project is estimated to generate approximately 17 employees on the project site. As described under Existing Conditions above, the existing land uses on the site have the potential to generate up to 18 employees. Accordingly, the proposed project would not generate additional jobs in Walnut Creek beyond what is currently possible on the site. Furthermore, according to the ABAG in their Projections 2013 estimates, Walnut Creek is estimated to have up to 49,860 jobs by the year 2020 when the project would be complete. The estimated 17 jobs generated by project operation would be well within forecast employment increases in Walnut Creek. The proposed project’s potential impact on growth from new employment would be less than significant.

Additionally, the proposed project does not include the construction of infrastructure or roads which would indirectly induce additional population growth. Therefore, a less than significant impact would result in this respect.

b),c) Would the project displace substantial numbers of existing housing units or people, necessitating the construction of replacement housing elsewhere?

The project site does not contain any residential units and would not displace housing or people. Therefore, the project would have no impact associated with the displacement of substantial numbers of housing or people.

90 Association of Bay Area Governments (ABAG), Projections 2013, Total Jobs, Contra Costa County, Walnut Creek.
XII. PUBLIC SERVICES

Would the proposed project:

<table>
<thead>
<tr>
<th>Potential Impact</th>
<th>Less Than Significant With Mitigation Incorporated</th>
<th>Less Than Significant</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for any of the public services:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fire protection?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Police protection?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Schools?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Parks?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Libraries?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

EXISTING CONDITIONS

Public service providers in Walnut Creek that would serve the proposed project include the following:

- The Contra Costa County Fire Protection District (CCCFDP) provides fire and emergency response services to nine cities within Contra Costa County, including Walnut Creek.
- The Walnut Creek Police Department provides police protection services in the city.
- The Walnut Creek Parks Division provides parks and recreation services in the city. Walnut Creek provides approximately 6 acres of parkland per 1,000 population and maintains a parkland ratio target of 5.4 acres per 1,000 population. The closest park to the project site is located at 1375 Civic Drive, approximately 1-mile away.
- The project site is within the boundaries of the Acalanes Union High School District and the Walnut Creek School District. Specifically, the project site is in the Buena Vista Elementary School attendance area, approximately ½-mile away, and the Las Lomas High attendance area 1.7 miles away.
- The Contra Costa County library district governs and administers 27 community libraries. The closest library to the project site is located at 1644 North Broadway in Walnut Creek approximately 1.2 miles away.
DISCUSSION

a) **Would the project result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for any of the public services: fire protection, police protection, schools?**

Fire and Police Protection Service

The proposed project would have a significant environmental impact if it would exceed the ability of fire and emergency medical responders, and law enforcement to adequately serve the project site, thereby requiring construction of new facilities or modification of existing facilities, the construction of which could cause significant environmental impacts.

At capacity, the proposed project could result in approximately 248 temporary residents in Walnut Creek for up to 124 guest rooms projected by the proposed project and 17 employees. Because the proposed project would result in new transient population on a site that is currently limited commercial uses, the proposed project would represent a more intense use of the site. Although the relationship is not directly proportional, more intense uses of land typically result in the increased potential for fire and emergency incidents. Thus, the proposed project would create an increased demand for fire and police protection services.

Fire service delivery in Contra Costa County is borderless and therefore other fire departments service other cities as needed. Fire Station 1 is the closest fire station to the project site. While the proposed project could potentially increase the number and frequency of calls for service by the CCCFDP from the addition of transient population on the project site, because the project site would be located approximately 1 mile from Fire Station 1, response times for many calls from the project site would be expected to fall within the CCCFDP’s response time goals. Furthermore, while the proposed project would increase the number of persons and level of activity on the project site, given the project site is surrounded by commercial land uses, it is reasonable to expect that the proposed project would not result in a meaningful increase in the amount of crime in the project site. Accordingly, the effect that the proposed project would have on police response times is considered to be minimal. Furthermore, the increases in demand for services expected with the transient population would be offset through payment of development fees and annual taxes, a portion of which go toward ongoing provision of and improvements to public services. Therefore, considering the proposed project as a whole, proximity to Fire Station 1, and surrounded by commercial land uses, constructing new or expanded facilities as a result of the construction and occupation of the proposed project would not be necessary to maintain

91 Estimate of guests:
- Double Queen Guestroom: 2 guests per room x 64 rooms = 128 guests
- King Guestroom: 2 guests per unit x 60 units = 120 guests
- Total: = 248 guests
acceptable service ratios, response times, or other performance objectives for fire and police protection services.

Further, Walnut Creek General Plan 2025, Chapter 2 Noise and Safety Element, Actions 4.2.2 and 5.5.2, requires all new development be submitted to the CCCFDP for review and all new discretionary permits be submitted to the Police Department for analysis of and recommendations to reduce impacts on police services. In addition, the CCCDFP and Police Department would be consulted to assess impacts related to fire and police services. Accordingly, proposed project impacts related to fire and police protection services would be less than significant and no mitigation measures are required.

Parks, School and Library Service

The proposed project would increase the number of persons and level of activity of the project site; however because the proposed project is a hotel, no permanent residents with children would be assumed to increase with the addition of the project site. Accordingly, no impact would result.

XIII. PARKS AND RECREATION

<table>
<thead>
<tr>
<th>Would the proposed project:</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation Incorporated</th>
<th>Less Than Significant</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Increase the use of existing neighborhood and regional parks or other recreational facilities, such that substantial physical deterioration of the facility would occur or be accelerated?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>b) Result in substantial adverse physical impacts associated with the provision of new or physically altered park and recreational facilities, or result in the need for new or physically altered park and recreational facilities, the construction of which could cause significant environmental impacts?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

EXISTING CONDITIONS

The City of Walnut Creek Department of Parks and Recreation is responsible for the maintenance of the City’s 17 parks within the city limit.92 The City of Walnut Creek has adopted a parkland dedication standard of 5.4 acres of parkland for every 1,000 residents.93 There are a total of approximately 411 acres of existing traditional developed parkland in Walnut Creek, or approximately 6 acres per 1,000 residents,

92 City of Walnut Creek, April 4, 2006. *Walnut Creek General Plan 2025 EIR*, Chapter 4.3 Public Services, page 87.
93 City of Walnut Creek, April 4, 2006. *Walnut Creek General Plan 2025 EIR*, Chapter 4.3 Public Services, page 87.
based on an existing population of 66,000 people in 2003.94 Regional park facilities operated by the East Bay Regional Park District (EBRPD) and Contra Costa County Parks could be used by residents of the project site. The closest EBRPD parks to Walnut Creek are the Castle Rock Regional Recreation Area and the Iron Horse Regional Trail. Open space within Walnut Creek includes Acalanes Ridge Open Space, Shell Ridge Open Space and Recreation Area, and land designated as open space in the General Plan.95

DISCUSSION

a) Would the project increase the use of existing neighborhood and regional parks or other recreational facilities, such that substantial physical deterioration of the facility would occur or be accelerated?

The proposed project would increase the number of persons and level of activity of the project site; however because the proposed project is a hotel, no permanent residents with children would be assumed to increase with the addition of the project site. Accordingly, the project is not expected to increase the use of any existing neighborhood and regional parks or other recreational facilities. Guests of the hotel would not likely visit or use any of the recreational facilities, therefore impacts on the City’s recreational facilities would be less than significant and no mitigation measures are required.

b) Would the project result in substantial adverse physical impacts associated with the provision of new or physically altered park and recreational facilities, or result in the need for new or physically altered park and recreational facilities, the construction of which could cause significant environmental impacts?

Future patrons of the hotel are not expected to use park and recreational facilities, therefore the proposed project would not result in substantial deterioration or trigger the construction of new built facilities over and beyond foreseen in the long-range planning completed for the regional park facilities of the project site. Therefore, a less-than-significant impact would occur.

94 City of Walnut Creek, April 4, 2006. *Walnut Creek General Plan 2025 EIR*, Chapter 4.3 Public Services, page 87.

95 City of Walnut Creek, April 4, 2006. *Walnut Creek General Plan 2025 EIR*, Chapter 4.3 Public Services, Figure 11: Open Space Areas.
XIV. TRANSPORTATION AND CIRCULATION

Would the proposed project:

<table>
<thead>
<tr>
<th>Would the proposed project:</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation Incorporated</th>
<th>Less Than Significant</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Conflict with an applicable plan, ordinance or policy establishing measures of effectiveness for the performance of the circulation system, taking into account all modes of transportation including mass transit and non-motorized travel and relevant components of the circulation system, including but not limited to intersections, streets, highways and freeways, pedestrian and bicycle paths, and mass transit?</td>
<td>☐</td>
<td>☐</td>
<td>■</td>
<td>☐</td>
</tr>
<tr>
<td>b) Conflict with an applicable congestion management program, including, but not limited to level of service standards and travel demand measures, or other standards established by the county congestion management agency for designated roads or highways?</td>
<td>☐</td>
<td>☐</td>
<td>■</td>
<td>☐</td>
</tr>
<tr>
<td>c) Result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks?</td>
<td>☐</td>
<td>☐</td>
<td>■</td>
<td>☐</td>
</tr>
<tr>
<td>d) Substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?</td>
<td>☐</td>
<td>■</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>e) Result in inadequate emergency access?</td>
<td>☐</td>
<td>☐</td>
<td>■</td>
<td>☐</td>
</tr>
<tr>
<td>f) Conflict with adopted policies, plans, or programs regarding public transit, bicycle, or pedestrian facilities, or otherwise decrease the performance or safety of such facilities?</td>
<td>☐</td>
<td>■</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

EXISTING CONDITIONS

This section describes the regulatory framework and existing conditions in the vicinity of the project site related to transportation and traffic, and the potential impacts of the proposed project on transportation and circulation. The analysis contained in this chapter is based on the Draft Hilton Garden Inn Transportation Impact Study (TIS), prepared by TJKM Transportation Consultants on February 8, 2016. This TIS is included in Appendix I, Transportation Data, of this IS/MND. As shown on Figure 3-3, project site access, including emergency vehicles and bicycles, would be provided from two existing driveways on Lawrence Way. The drive aisle would extend around the front of the building to the loading zone on the southwest portion of the project site.
Study Intersections

The study intersections have been identified as those most likely to be affected by the proposed project. The following intersections in the immediate vicinity of the site are evaluated for the weekday morning (7:00 to 9:00 a.m.), which reflects conditions during the home to work or school commute, and evening (4:00 to 6:00 p.m.) peak periods, which typically reflects the highest level of congestion during the homeward bound commute:

1. Penniman Way and Lawrence Way
2. Lawrence Way and Parkside Avenue
3. North Main Street and Parkside Avenue
4. North Main Street and San Luis Road
5. North Main Street and Penniman Way
6. San Luis Road and I-680 SB Ramps
7. Parkside Drive and Jones Road
8. Parkside Drive and North Broadway
9. Parkside Drive and North Civic Drive
10. Lawrence Way and Access Ramp

Figure 4-3 illustrates peak hour traffic volumes at each study intersection, and Figure 4-4 illustrates the existing lane geometry and traffic controls under existing conditions.

Bicycle and Pedestrian Facilities

Bicycle and pedestrian facilities typically include sidewalks, crosswalks, pedestrian signal phases, curb ramps, curb extensions, and various streetscape amenities such as lighting, and benches.

As shown on Figure 4-4, in the project area, Class II\(^{96}\) bike lanes exist along North Main Street north of San Luis Road and on Buena Vista Avenue north of San Luis Road. Class III\(^{97,98}\) bike routes are signed along Ygnacio Valley Road south of the project site, as well as on San Luis Road, Buena Vista Avenue, Parkside Drive between Buena Vista Avenue and Riviera Avenue, and Riviera Avenue south of Parkside Drive.\(^{99}\).

\(^{96}\) Class II Bike Lane – Lanes on roadways designated for use by bicycles through striping, pavement legends, and signs.

\(^{97}\) Class III Bike Route – Designated roadways for bicycle use by signs or other markings may or may not include additional pavement width for cyclists.

\(^{98}\) Class III Bike Route – signing only for shared use with motor vehicles within the same travel lane on a street or highway.

\(^{99}\) City of Walnut Creek Bicycle Master Plan, 2011. Existing and Proposed Bicycle Facilities.
Future bicycle facilities are planned for Parkside Drive between Riviera Drive and North Civic Road, on Jones Road, and on North Civic Drive/Oak Road.100 In general, a network of sidewalks, crosswalks, pedestrian signals, and curb ramps provide access for pedestrians in the vicinity of the proposed project site. Specifically, pedestrian access to the project site would be via a sidewalk on Lawrence Way. It should be noted that although the pedestrian facilities in the project area are generally sufficient and ADA-compliant, the high traffic volumes and speeds on the adjoining roadways contribute to a pedestrian environment that is generally not walkable, as it may be unpleasant and require additional care to traverse safely.

Existing Conditions Peak Hour Traffic Volumes

Figure 4-3

Figure 4-4
Existing Lane Geometry and Traffic Controls

Transit Facilities

The Central Contra Costa Transit Authority (County Connection) and Bay Area Rapid Transit District (BART) provide transit service in the study area within the City of Walnut Creek. As shown on Figure 4-5, within the vicinity of the project area, two bus lines (one local and one express) operate on North Main Street on weekdays. The nearest stops for these lines are located within walking distance (i.e., ¼-mile) at the intersection of the project site. The bus stops at North Main Street/Parkside Drive and North Civic Drive/Parkside Drive serve, 0.3 miles from the project site. The routes that serve these bus stops are as follows:

- **Route 9** is a local route that operates between Diablo Valley College and the Walnut Creek BART station. The route operates on weekdays from 5:50 a.m. to 10:45 p.m. at varying headways between 40 and 55 minutes.
- **Route 15** is a local route that operates between the Walnut Creek BART station and the Concord BART Station. It operates on weekdays from 5:45 a.m. to 8:45 p.m. with 65-minute headways. Route 15 operates on North Civic Drive, with the closest stop at the intersection of North Main Street and Parkside Drive, ½-mile from the project site.
- **Route 98X** is an express bus service that operates between the Martinez Amtrak Station and the BART Walnut Creek Station. The route operates on weekdays from 5:30 a.m. to 7:40 p.m. at 40- to 60-minute headways.
- **Route 311** is local route that operates between the Walnut Creek and Concord BART stations along North Civic Drive on weekends from 7:20 a.m. to 7:00 p.m. with 90-minute headways.

Two bicycles can be carried on most County Connection buses. Bike rack space is available on a first come, first served basis.

The Walnut Creek BART Station is located on the northwest corner of N. California Boulevard/Ygnacio Valley Road, approximately 0.5 miles northeast of the project site, with connections to numerous other bus routes. Bicycles are allowed on BART. The Station provides access to nearby counties and is a connection point for County Connection Routes 1, 2, 4, 5, 9, 15, 25, 92X, and 98X.

METHODOLOGY

Intersection Level of Service

Level of service (LOS) is used to rank traffic operation on various types of facilities based on traffic volumes and roadway capacity using a series of letter designations ranging from LOS A to F. Generally, LOS A represents free flow conditions and LOS F represents forced flow or breakdown conditions. A unit of measure that indicates a level of delay generally accompanies the level of service designation.
The study intersections under jurisdiction of the City of Walnut Creek were analyzed using the 2010 HCM Operations Methodology for signalized intersections as described in Chapter 18 \(^{101}\) whenever possible. Due to limitations in the HCM 2010 methodology, four signalized intersections were instead analyzed using the HCM 2000 Operations Methodology for signalized intersections described in Chapter 16. \(^{102}\) Both methodologies determine level of service based on average control delay per vehicle for the overall intersection during peak hour intersection operating conditions. The level of service methodology is approved and adopted by the City of Walnut Creek. Control delay includes initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay. The ranges of delay associated with the various levels of service are indicated in Table 4-12.

Figure 4-5
Existing Pedestrian, Bicycle and Transit Facilities

TABLE 4-12 SIGNALIZED INTERSECTION LEVEL OF SERVICE CRITERIA

<table>
<thead>
<tr>
<th>Level of Service</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Delay of 0 to 10 seconds. Most vehicles arrive during the green phase, so do not stop at all.</td>
</tr>
<tr>
<td>B</td>
<td>Delay of 10 to 20 seconds. More vehicles stop than with LOS A, but many drivers still do not have to stop.</td>
</tr>
<tr>
<td>C</td>
<td>Delay of 20 to 35 seconds. The number of vehicles stopping is significant, although many still pass through without stopping.</td>
</tr>
<tr>
<td>D</td>
<td>Delay of 35 to 55 seconds. The influence of congestion is noticeable, and most vehicles have to stop.</td>
</tr>
<tr>
<td>E</td>
<td>Delay of 55 to 80 seconds. Most, if not all, vehicles must stop and drivers consider the delay excessive.</td>
</tr>
<tr>
<td>F</td>
<td>Delay of more than 80 seconds. Vehicles may wait through more than one cycle to clear the intersection.</td>
</tr>
</tbody>
</table>

The study intersections under stop control (unsignalized) were analyzed using the 2010 HCM Operations Methodology for unsignalized intersections described in Chapters 19-20.103 Due to limitations in the HCM 2010 methodology, one unsignalized intersection was instead analyzed using the HCM 2000 Operations Methodology for unsignalized intersections described in Chapter 17.104 Level of service ratings for stop-sign controlled intersections are based on the average control delay expressed in seconds per vehicle. At the side street, stop controlled intersections or two-way stop controlled intersections, the control delay is calculated for each movement, not for the intersection as a whole. For approaches composed of a single lane, the control delay is computed as the average of all movements in that lane. The weighted average delay for the entire intersection is presented for all-way stop controlled intersections. The ranges of delay associated with the various levels of service are indicated in Table 4-13.

TABLE 4-13 UNSIGNALIZED INTERSECTION LEVEL OF SERVICE CRITERIA

<table>
<thead>
<tr>
<th>Level of Service</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Very low control delay of less than 10 seconds per vehicle for each movement subject to delay.</td>
</tr>
<tr>
<td>B</td>
<td>Low control delay of greater than 10 and up to 15 seconds per vehicle for each movement subject to delay.</td>
</tr>
<tr>
<td>C</td>
<td>Acceptable control delay greater than 15 and up to 25 seconds per vehicle for each movement subject to delay.</td>
</tr>
<tr>
<td>D</td>
<td>Tolerable control delay greater than 25 and up to 35 seconds per vehicle for each movement subject to delay.</td>
</tr>
<tr>
<td>E</td>
<td>Limit of tolerable control delay greater than 35 and up to 50 seconds per vehicle for each movement subject to delay.</td>
</tr>
<tr>
<td>F</td>
<td>Unacceptable control delay in excess of 50 seconds per vehicle for each movement subject to delay.</td>
</tr>
</tbody>
</table>

103 Highway Capacity Manual, 2010. Transportation Research Board.

104 Highway Capacity Manual, 2010. Transportation Research Board.
Freeway Segment Level of Service

TJKM conducted a freeway mainline level of service analysis for segments of I-680 north and south of the North Main Street interchange. The measure of effectiveness used to evaluate freeway segments is based on density of vehicles, expressed in passenger cars per mile per lane. Mainline level of service was calculated for segments north and south of North Main Street using Highway Capacity Software \(^{105}\) for all No Project and Plus Project scenarios, assuming five percent heavy vehicles per Caltrans statistics for 2016. The most recent volume data for I-680 was accessed from the Caltrans Performance Measurement Systems (PeMS) at the mainline census stations located north and south of North Main Street. Average weekday peak hour directional mainline volumes were last collected at all census stations simultaneously in May through July, 2016. These volumes were increased by 0.3 percent per year to project expected peak hour volumes for 2017 (Existing Conditions), 2025 (Background Conditions), and 2035 (Cumulative Conditions). As a higher growth rate of 0.8 percent per year was used for projecting intersection volumes, this more conservative rate was applied to existing ramp volumes to project expected peak hour volumes for 2025 and 2035.

Traffic Operation Standards

City of Walnut Creek Intersections

According to the City’s adopted 2006 General Plan, the intersection and arterial level of service standard is LOS D for collectors, arterials, and roadways of regional significance. All study intersections are located on one or more such roadways and thus fall under this standard. The City’s Transportation Impact Analysis Guidelines (2014) specify that for study intersections, the impact is considered significant if the addition of the traffic generated from the proposed project results in the following:

- Causes a signalized intersection operating at an acceptable level of service without the project to operate at an unacceptable level of service.

There is no specified criterion for determining significant impacts to unsignalized intersections.

Caltrans Intersections and Freeway Segments

Caltrans endeavors to maintain a target level of service at the transition between LOS C and LOS D on all State highway facilities. However, Caltrans acknowledges that this may not always be feasible and recommends that the lead agency consult with Caltrans to determine the appropriate target level of service. Level of service is based on appropriate measures of effectiveness (MOEs) determined by the type of facility. For the purpose of this analysis, the significance criteria established by the City of Walnut Creek have been applied to identify potentially significant impacts at Caltrans-operated intersections. A

target of LOS D has been assumed for freeway segments. If an existing State highway facility is operating at less than the appropriate target level of service, the existing MOE should be maintained.

QUEUING

TJKM conducted a vehicle queuing and storage analysis for all exclusive left and right turn pockets at each signalized study intersection under Existing and Existing plus Project Conditions. The 95th percentile (maximum) queues were calculated in Synchro 10 software, assuming an average vehicle length of 25 feet. Detailed queuing reports are included in Appendix I corresponding to each analysis scenario.

DISCUSSION

a) Would the project conflict with an applicable plan, ordinance or policy establishing measures of effectiveness for the performance of the circulation system, taking into account all modes of transportation including mass transit and non-motorized travel and relevant components of the circulation system, including but not limited to intersections, streets, highways and freeways, pedestrian and bicycle paths, and mass transit?

This section describes the traffic conditions that would result with the addition of the trips generated by the development under the proposed project on the local roadway network. The magnitude of traffic generated by the proposed project was estimated by applying to the size of the proposed project the appropriate trip generation rates, as published by the Institute of Transportation Engineers (ITE) in Trip Generation Manual, 9th Edition, 2012 for “Hotel” (ITE LU #310).

Trip Generation

The trip generation estimates for the proposed project are based on ITE’s trip generation rates for hotel land use, which include both hotel employees and guests. The expected trip generation potential for the proposed project is indicated in Table 4-14. The proposed project is expected to generate 1,013 daily trips, including 66 AM peak hour trips (39 inbound trips, 27 outbound trips) and 74 PM peak hour trips (38 inbound trips, 36 outbound trips); these new trips represent the increase in traffic associated with the project compared to existing volumes.
TABLE 4-14 PROJECT TRIP GENERATION

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Size</th>
<th>Rate</th>
<th>Trips</th>
<th>AM Peak</th>
<th>PM Peak</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Daily</td>
<td></td>
<td></td>
<td>Rate</td>
<td>Rate</td>
</tr>
<tr>
<td>Hotel</td>
<td>124 Rooms</td>
<td>8.17</td>
<td>1,013</td>
<td>0.53</td>
<td>0.60</td>
</tr>
<tr>
<td></td>
<td>In:Out</td>
<td>In</td>
<td>Out</td>
<td>Total</td>
<td>In:Out</td>
</tr>
<tr>
<td></td>
<td>59:41</td>
<td>39</td>
<td>27</td>
<td>66</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>In</td>
<td>38</td>
<td>36</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>Total Trips</td>
<td>1,013</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>39</td>
<td>27</td>
<td>66</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>36</td>
<td>74</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Trip Distribution

The pattern used to allocate new project trips to the street network was based on the existing travel patterns and TJKM’s knowledge of the study area. The applied distribution assumptions and resulting trips are shown in Table 4-15 and depicted on Figure 4-6.

TABLE 4-15 TRIP DISTRIBUTION ASSUMPTIONS

<table>
<thead>
<tr>
<th>Route</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-680 north of North Main Street</td>
<td>30%</td>
</tr>
<tr>
<td>I-680 south of North Main Street a</td>
<td>30%</td>
</tr>
<tr>
<td>North Main Street north of San Lis Road</td>
<td>10%</td>
</tr>
<tr>
<td>Parkside Drive west of I-680</td>
<td>10%</td>
</tr>
<tr>
<td>North Main Street south of Lawrence Way</td>
<td>10%</td>
</tr>
<tr>
<td>North Civic Drive south of Parkside Drive</td>
<td>10%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

a. Including 15 percent inbound via Penniman Way and 15 percent inbound via Lawrence Way south of Parkside Drive.

The following describes the level of service at project site intersections and freeway segments for Existing Plus Project, Background Plus Project Conditions, and Cumulative Plus Project Conditions. Queueing analysis is provided for Existing Plus Project and Background Plus Project Conditions.
Intersection Level of Service

Existing Plus Project Conditions

The results of the level of service analysis under Existing Plus Project conditions are summarized in Table 4-16. The results show that all of the study intersections operate at acceptable LOS D or better during both AM and PM peak hours, with the exception of the unsignalized intersections of San Luis Road and I-680 Southbound Ramps and Parkside Drive and Jones Road. San Luis Road and I-680 Southbound Ramps continue to operate at LOS F in the AM peak hour, and Parkside Drive and Jones Road continue to operate at LOS F in the AM peak hour and LOS E in the PM peak hour. The project would add 2.7 seconds or less to the average delay at all study intersections, excluding the project driveway. Peak hour traffic volumes for each study intersection are depicted on Figure 4-7.

Background Plus Project Conditions

This analysis scenario presents the impacts of the proposed commercial development at the study intersections and surrounding roadway system. This scenario is identical to Background Conditions, but with the addition of projected traffic from the proposed development. With project-related traffic added to Background volumes, all of the study intersections operate at acceptable LOS D or better during both AM and PM peak hours, with the exception of the unsignalized intersections of San Luis Road and I-680 Southbound Ramps and Parkside Drive and Jones Road. These results are summarized in Table 4-17. Peak hour traffic volumes under Background plus Project Conditions are illustrated on Figure 4-8.

Cumulative Plus Project Conditions

The intersection level of service analysis results for Cumulative plus Project Conditions are summarized in Table 4-18. Upon the addition of project-generated traffic to the anticipated Cumulative volumes, and with the planned improvements, all of the study intersections operate at acceptable LOS D or better during both AM and PM peak hours, with the exception of the unsignalized intersections of San Luis Road and I-680 Southbound Ramps and Parkside Drive and Jones Road. Peak hour traffic volumes under Cumulative plus Project conditions are illustrated on Figure 4-9.

A peak hour signal warrant analysis was conducted for the unsignalized intersections that operate unacceptably to determine if a traffic signal is warranted. A signal is warranted at Parkside Drive and Jones Road only. Based on the City of Walnut Creek’s impact criteria, the project is expected to have a less-than-significant impact at all the study intersections evaluated.
Table 4-16: Intersection Level of Service Analysis – Existing plus Project Conditions

<table>
<thead>
<tr>
<th>ID</th>
<th>Study Intersections</th>
<th>Control</th>
<th>Simplified Geometry</th>
<th>Methodology</th>
<th>Peak Hour(a)</th>
<th>Delay(b)</th>
<th>LOS(c)</th>
<th>Delay</th>
<th>LOS</th>
<th>Change in Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Penniman Way & Lawrence Way</td>
<td>Signal</td>
<td>No</td>
<td>HCM 2010</td>
<td>AM 5.5</td>
<td>A</td>
<td>5.4</td>
<td>A</td>
<td>-0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PM 13.5</td>
<td>B</td>
<td>13.4</td>
<td>B</td>
<td>-0.1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Lawrence Way & Parkside Avenue</td>
<td>Signal</td>
<td>Yes</td>
<td>HCM 2010</td>
<td>AM 3.8</td>
<td>A</td>
<td>4.3</td>
<td>A</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PM 2.4</td>
<td>A</td>
<td>2.6</td>
<td>A</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>North Main Street & Parkside Avenue</td>
<td>Signal</td>
<td>Yes</td>
<td>HCM 2010/2000</td>
<td>AM 43.9</td>
<td>D</td>
<td>45.6</td>
<td>D</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PM 41.0</td>
<td>D</td>
<td>41.8</td>
<td>D</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>North Main Street & San Luis Road</td>
<td>Signal</td>
<td>Yes</td>
<td>HCM 2010</td>
<td>AM 18.4</td>
<td>B</td>
<td>17.4</td>
<td>B</td>
<td>-1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PM 31.3</td>
<td>C</td>
<td>31.8</td>
<td>C</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>North Main Street & Penniman Way</td>
<td>Signal</td>
<td>No</td>
<td>HCM 2000</td>
<td>AM 12.4</td>
<td>B</td>
<td>12.9</td>
<td>B</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PM 9.8</td>
<td>A</td>
<td>10.8</td>
<td>B</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>San Luis Road & I-680 SB Ramps</td>
<td>3WSC</td>
<td>Yes</td>
<td>HCM 2000</td>
<td>AM 58.8</td>
<td>F</td>
<td>61.5</td>
<td>F</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PM 11.0</td>
<td>B</td>
<td>11.2</td>
<td>B</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Parkside Drive & Jones Road</td>
<td>TWSC</td>
<td>No</td>
<td>HCM 2010</td>
<td>AM 41.5</td>
<td>E</td>
<td>41.6</td>
<td>E</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PM 37.5</td>
<td>E</td>
<td>39.0</td>
<td>E</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Parkside Drive & North Broadway</td>
<td>Signal</td>
<td>Yes</td>
<td>HCM 2010</td>
<td>AM 15.8</td>
<td>B</td>
<td>15.7</td>
<td>B</td>
<td>-0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PM 35.3</td>
<td>D</td>
<td>35.3</td>
<td>D</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Parkside Drive & North Civic Drive</td>
<td>Signal</td>
<td>No</td>
<td>HCM 2000</td>
<td>AM 29.5</td>
<td>C</td>
<td>29.9</td>
<td>C</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PM 18.4</td>
<td>B</td>
<td>18.5</td>
<td>B</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Lawrence Way & Access Ramp</td>
<td>Signal</td>
<td>No</td>
<td>HCM 2000</td>
<td>AM 16.4</td>
<td>B</td>
<td>16.4</td>
<td>B</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PM 13.4</td>
<td>B</td>
<td>14.2</td>
<td>B</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Project Driveway & Lawrence Way</td>
<td>OWSC</td>
<td>Yes</td>
<td>HCM 2010</td>
<td>AM 0.0</td>
<td>A</td>
<td>11.6</td>
<td>B</td>
<td>11.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PM 0.0</td>
<td>A</td>
<td>14.3</td>
<td>B</td>
<td>14.3</td>
<td></td>
</tr>
</tbody>
</table>

Note: Bold text indicates intersection operates at a deficient level of service.

- **a.** AM – morning peak hour, PM – evening peak hour
- **b.** Delay – Whole intersection weighted average control delay expressed in seconds per vehicle for signalized and all-way stop controlled intersections. Total control delay for the worst movement is presented for side-street stop controlled intersections.
- **c.** LOS – Level of service.

Source: TJKM, 2018. Hilton Garden Inn Transportation Impact Study.
Environmental Analysis and Findings

Existing Plus Project Conditions Peak Hour Traffic Volumes

<table>
<thead>
<tr>
<th>Intersection #1</th>
<th>Intersection #2</th>
<th>Intersection #3</th>
<th>Intersection #4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penniman Way & Lawrence Way</td>
<td>Lawrence Way & Parkside Ave.</td>
<td>N. Main St. & Parkside Ave.</td>
<td>N. Main St. & San Luis Rd.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intersection #5
N. Main St. & Penniman Way

Intersection #6
San Luis Rd. & I-680 S.B. Ramps

Intersection #7
Parkside Dr. & Jones Rd.

Intersection #8
Parkside Dr. & N. Broadway

Intersection #9
Parkside Dr. & N. Civic Dr.

Intersection #10
Lawrence Way & Access Ramp

Intersection #11
Lawrence Way & Project Driveway

Legend

- **XX:** Signalized Study Intersection
- **XX** (30): Unsignalized Study Intersection
- **AM Peak Hour Volumes**: 47 (152)
- **PM Peak Hour Volumes**: 167 (91)

Figure 4-7

Existing Plus Project Conditions Peak Hour Traffic Volumes.
Table 4-17 Intersection Level of Service Analysis — Background plus Project Conditions

<table>
<thead>
<tr>
<th>ID</th>
<th>Study Intersections</th>
<th>Control</th>
<th>Simplified Geometry</th>
<th>Methodology</th>
<th>AM</th>
<th>PM</th>
<th>AM</th>
<th>PM</th>
<th>Background Conditions</th>
<th>Background plus Project Conditions</th>
<th>Change in Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Penniman Way & Lawrence Way</td>
<td>Signal</td>
<td>No</td>
<td>HCM 2000</td>
<td>5.8</td>
<td>12.6</td>
<td>5.6</td>
<td>12.0</td>
<td>A</td>
<td>B</td>
<td>-0.2</td>
</tr>
<tr>
<td>2</td>
<td>Lawrence Way & Parkside Avenue</td>
<td>Signal</td>
<td>Yes</td>
<td>HCM 2000</td>
<td>4.2</td>
<td>2.3</td>
<td>4.6</td>
<td>2.4</td>
<td>A</td>
<td>A</td>
<td>0.4</td>
</tr>
<tr>
<td>3</td>
<td>North Main Street & Parkside Avenue</td>
<td>Signal</td>
<td>Yes</td>
<td>HCM 2010/2000</td>
<td>42.3</td>
<td>40.3</td>
<td>44.3</td>
<td>40.8</td>
<td>D</td>
<td>D</td>
<td>2.0</td>
</tr>
<tr>
<td>4</td>
<td>North Main Street & San Luis Road</td>
<td>Signal</td>
<td>Yes</td>
<td>HCM 2010</td>
<td>19.5</td>
<td>31.6</td>
<td>19.9</td>
<td>32.2</td>
<td>B</td>
<td>C</td>
<td>0.4</td>
</tr>
<tr>
<td>5</td>
<td>North Main Street & Penniman Way</td>
<td>Signal</td>
<td>No</td>
<td>HCM 2000</td>
<td>13.1</td>
<td>10.3</td>
<td>13.7</td>
<td>10.7</td>
<td>B</td>
<td>B</td>
<td>0.6</td>
</tr>
<tr>
<td>6</td>
<td>San Luis Road & I-680 SB Ramps</td>
<td>3WSC</td>
<td>Yes</td>
<td>HCM 2000</td>
<td>78.5</td>
<td>11.3</td>
<td>81.2</td>
<td>11.4</td>
<td>F</td>
<td>F</td>
<td>2.7</td>
</tr>
<tr>
<td>7</td>
<td>Parkside Drive & Jones Road</td>
<td>TWSC</td>
<td>No</td>
<td>HCM 2010</td>
<td>58.0</td>
<td>35.1</td>
<td>58.2</td>
<td>36.2</td>
<td>F</td>
<td>F</td>
<td>0.2</td>
</tr>
<tr>
<td>8</td>
<td>Parkside Drive & North Broadway</td>
<td>Signal</td>
<td>Yes</td>
<td>HCM 2010</td>
<td>16.1</td>
<td>34.1</td>
<td>16.0</td>
<td>34.0</td>
<td>B</td>
<td>C</td>
<td>-0.1</td>
</tr>
<tr>
<td>9</td>
<td>Parkside Drive & North Civic Drive</td>
<td>Signal</td>
<td>No</td>
<td>HCM 2000</td>
<td>33.9</td>
<td>19.6</td>
<td>34.4</td>
<td>19.5</td>
<td>C</td>
<td>C</td>
<td>0.5</td>
</tr>
<tr>
<td>10</td>
<td>Lawrence Way & Access Ramp</td>
<td>Signal</td>
<td>No</td>
<td>HCM 2000</td>
<td>16.3</td>
<td>13.6</td>
<td>16.3</td>
<td>14.1</td>
<td>B</td>
<td>B</td>
<td>-0.1</td>
</tr>
<tr>
<td>11</td>
<td>Project Driveway & Lawrence Way</td>
<td>OWSC</td>
<td>Yes</td>
<td>HCM 2010</td>
<td>0.0</td>
<td>0.0</td>
<td>11.8</td>
<td>14.8</td>
<td>A</td>
<td>B</td>
<td>11.8</td>
</tr>
</tbody>
</table>

Notes:
- **Bold** text indicates intersection operates at a deficient level of service.
- a. AM – morning peak hour, PM – evening peak hour
- b. Delay – Whole intersection weighted average control delay expressed in seconds per vehicle for signalized and all-way stop controlled intersections. Total control delay for the worst movement is presented for side-street stop controlled intersections.
- c. LOS – Level of service.
Background Plus Project Conditions Peak Hour Traffic Volumes

Table 4-8

<table>
<thead>
<tr>
<th>Intersection #1</th>
<th>Intersection #2</th>
<th>Intersection #3</th>
<th>Intersection #4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penniman Way & Lawrence Way</td>
<td>Lawrence Way & Parkside Ave.</td>
<td>N. Main St. & Parkside Ave.</td>
<td>N. Main St. & San Luis Rd.</td>
</tr>
<tr>
<td>2769 (1446)</td>
<td>276 (315)</td>
<td>110 (418)</td>
<td>27 (51)</td>
</tr>
<tr>
<td>N. Civic Dr.</td>
<td>N. Civic Dr.</td>
<td>N. Civic Dr.</td>
<td>N. Civic Dr.</td>
</tr>
<tr>
<td>2629 (1446)</td>
<td>276 (315)</td>
<td>110 (418)</td>
<td>27 (51)</td>
</tr>
<tr>
<td>595 (475)</td>
<td>27 (36)</td>
<td>27 (36)</td>
<td>595 (475)</td>
</tr>
<tr>
<td>227 (125)</td>
<td>1115 (493)</td>
<td>227 (125)</td>
<td>1115 (493)</td>
</tr>
<tr>
<td>5 (3)</td>
<td>43 (320)</td>
<td>30 (43)</td>
<td>309 (1065)</td>
</tr>
<tr>
<td>5 (3)</td>
<td>43 (320)</td>
<td>30 (43)</td>
<td>309 (1065)</td>
</tr>
<tr>
<td>Legend</td>
<td>Legend</td>
<td>Legend</td>
<td>Legend</td>
</tr>
<tr>
<td>[XX] Signalized Study Intersection</td>
<td>[XX] Signalized Study Intersection</td>
<td>[XX] Signalized Study Intersection</td>
<td>[XX] Signalized Study Intersection</td>
</tr>
<tr>
<td>[XX] Unsignalized Study Intersection</td>
<td>[XX] Unsignalized Study Intersection</td>
<td>[XX] Unsignalized Study Intersection</td>
<td>[XX] Unsignalized Study Intersection</td>
</tr>
<tr>
<td>AM Peak Hour Volumes</td>
<td>AM Peak Hour Volumes</td>
<td>AM Peak Hour Volumes</td>
<td>AM Peak Hour Volumes</td>
</tr>
<tr>
<td>PM Peak Hour Volumes</td>
<td>PM Peak Hour Volumes</td>
<td>PM Peak Hour Volumes</td>
<td>PM Peak Hour Volumes</td>
</tr>
</tbody>
</table>

Figure 4-8

Background Plus Project Conditions Peak Hour Traffic Volumes
Table 4-18 Intersection Level of Service Analysis – Cumulative plus Project Conditions

<table>
<thead>
<tr>
<th>ID</th>
<th>Study Intersections</th>
<th>Control</th>
<th>Simplified Geometry</th>
<th>Methodology</th>
<th>Cumulative Conditions</th>
<th>Cumulative plus Project Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Peak Hour<sup>a</sup></td>
<td>Delay<sup>b</sup></td>
</tr>
<tr>
<td>1</td>
<td>Penniman Way & Lawrence Way</td>
<td>Signal</td>
<td>No</td>
<td>HCM 2000</td>
<td>AM 6.1</td>
<td>A 5.5</td>
</tr>
<tr>
<td>2</td>
<td>Lawrence Way & Parkside Avenue</td>
<td>Signal</td>
<td>Yes</td>
<td>HCM 2000</td>
<td>AM 4.9</td>
<td>A 4.9</td>
</tr>
<tr>
<td>3</td>
<td>North Main Street & Parkside Avenue</td>
<td>Signal</td>
<td>Yes</td>
<td>HCM 2010/2000</td>
<td>AM 41.5</td>
<td>D 43.1</td>
</tr>
<tr>
<td>4</td>
<td>North Main Street & San Luis Road</td>
<td>Signal</td>
<td>Yes</td>
<td>HCM 2010</td>
<td>AM 19</td>
<td>B 18.9</td>
</tr>
<tr>
<td>5</td>
<td>North Main Street & Penniman Way</td>
<td>Signal</td>
<td>No</td>
<td>HCM 2000</td>
<td>AM 14.4</td>
<td>B 14.5</td>
</tr>
<tr>
<td>6</td>
<td>San Luis Road & I-680 SB Ramps</td>
<td>3WSC</td>
<td>Yes</td>
<td>HCM 2000</td>
<td>AM 104.7</td>
<td>F 107.9</td>
</tr>
<tr>
<td>7</td>
<td>Parkside Drive & Jones Road</td>
<td>TWSC</td>
<td>No</td>
<td>HCM 2010</td>
<td>AM 71.4</td>
<td>F 72.9</td>
</tr>
<tr>
<td>8</td>
<td>Parkside Drive & North Broadway</td>
<td>Signal</td>
<td>Yes</td>
<td>HCM 2010</td>
<td>AM 20.4</td>
<td>C 20.6</td>
</tr>
<tr>
<td>9</td>
<td>Parkside Drive & North Civic Drive</td>
<td>Signal</td>
<td>No</td>
<td>HCM 2000</td>
<td>AM 43.6</td>
<td>D 43.2</td>
</tr>
<tr>
<td>10</td>
<td>Lawrence Way & Access Ramp</td>
<td>Signal</td>
<td>No</td>
<td>HCM 2000</td>
<td>AM 16.3</td>
<td>B 16.0</td>
</tr>
<tr>
<td>11</td>
<td>Project Driveway & Lawrence Way</td>
<td>OWSC</td>
<td>Yes</td>
<td>HCM 2010</td>
<td>AM 0.0</td>
<td>A 12.0</td>
</tr>
</tbody>
</table>

Note: **Bold** text indicates intersection operates at a deficient level of service.

a. AM – morning peak hour, PM – evening peak hour
b. Delay – Whole intersection weighted average control delay expressed in seconds per vehicle for signalized and all-way stop controlled intersections. Total control delay for the worst movement is presented for side-street stop controlled intersections.
c. LOS – Level of service.

Environmental Analysis and Findings

Cumulative Plus Project Conditions Peak Hour Traffic Volumes

Source: TJKM, 2018.

Diagram and Tables:

- **Intersection #1:** Penniman Way & Lawrence Way (I-680 N.B Ramps)
- **Intersection #2:** Lawrence Way & Parkside Ave.
- **Intersection #3:** N. Main St. & Parkside Ave.
- **Intersection #4:** N. Main St. & San Luis Rd.
- **Intersection #5:** N. Main St. & Penniman Way
- **Intersection #6:** San Luis Rd. & I-680 S.B Ramps
- **Intersection #7:** Parkside Dr. & Jones Rd.
- **Intersection #8:** Parkside Dr. & N. Broadway
- **Intersection #9:** Parkside Dr. & N. Civic Dr.
- **Intersection #10:** Lawrence Way & Access Ramp
- **Intersection #11:** Lawrence Way & Project Driveway

Legend:

- **X** Signalized Study Intersection
- **XX** Unsignalized Study Intersection
- **(XX)** AM Peak Hour Volumes
- **(XX)** PM Peak Hour Volumes

Figure 4-9

Cumulative Plus Project Conditions Peak Hour Traffic Volumes
Background Plus Project Conditions

Vehicle queueing was analyzed at signalized intersections for all dedicated turn lanes where the project would add trips. The 95th percentile queueing analysis results for these four signalized intersections under Existing and Existing plus Project Conditions are summarized in Table 4-19, rounded to the nearest 10 feet. The results for Existing Conditions are included for comparison purposes, along with projected increases in queue length with the addition of project traffic. Queue lengths under background conditions are accommodated at two of the intersections, while the other two would experience queue overflows during one or both peak hours. In the case of North Main Street and Parkside Avenue, the maximum 95th percentile queue length under either scenario is 290 feet. This would cause left turning traffic to back up to approximately Kazebeer Road, which is a side-street intersection, but it is unlikely to cause upstream congestion. At both intersections with queue overflow, the addition of project traffic is expected to add 1 to 2 additional vehicles to the existing queues, a minor change.

Table 4-19 95th Percentile Queues at Turn Pockets Affected by Project Traffic

<table>
<thead>
<tr>
<th>ID</th>
<th>Study Intersections</th>
<th>Lane Group</th>
<th>Storage Length</th>
<th>Peak Hour</th>
<th>Background Queue Length</th>
<th>Background plus Project Queue Length</th>
<th>Change in Queue</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Penniman Way & Lawrence Way</td>
<td>Northbound Left</td>
<td>650</td>
<td>AM</td>
<td>10</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PM</td>
<td>0</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Lawrence Way & Parkside Ave</td>
<td>Eastbound Left</td>
<td>110</td>
<td>AM</td>
<td>50</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PM</td>
<td>30</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>North Main Street & Parkside Ave</td>
<td>Southbound Left</td>
<td>190</td>
<td>AM</td>
<td>290</td>
<td>320</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PM</td>
<td>270</td>
<td>290</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>North Main Street & San Luis Road</td>
<td>Northbound Left</td>
<td>150</td>
<td>AM</td>
<td>150</td>
<td>160</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PM</td>
<td>270</td>
<td>290</td>
<td>20</td>
</tr>
</tbody>
</table>

Notes: Storage length and 95th percentile queue are expressed in feet per lane, rounded to the nearest 10 feet. Bold indicates overflow.

Under both existing plus project and background plus project conditions, an additional 1 to 2 vehicles to existing left-turn queues at the study intersections, representing a minor change to existing conditions. Therefore, the proposed project would result in a less-than-significant impact on the expected left-turn queues at the study intersections.

Freeway Segment Level of Service Analysis

For freeway segments that operate at an unacceptable level of service under the existing conditions, the addition of project-generated trips is considered to have a potentially significant impact if operation...
deteriorates to a lower service level. Under Existing Plus Project, Background plus Project, and Cumulative plus Project conditions, the study freeway segments are expected to continue operating at the same level of service as without the project trips. These results are summarized in Tables 4-20, 4-22, and 4-24.

Existing Plus Project Conditions

With project-generated traffic added to the Existing volumes, the study roadways are expected to maintain an acceptable level of service. The Existing Plus Project operating conditions are summarized in Table 4-20.

Mainline Analysis

The freeway level of service analysis results for the study segments of I-680 are summarized in Table 4-20. Results for Existing conditions are included for comparison purposes, based on projected 2017 freeway volumes. Under Existing plus Project Conditions, both freeway segments would operate at LOS C in both directions and for both AM and PM peak hours. The addition of project traffic would produce negligible changes in traffic density and freeway level of service.

Ramp Terminal Analysis

The level of service results for the ramps of the North Main Street interchange on I-680 are summarized in Table 4-21. Results for Existing conditions are included for comparison purposes, based on existing 2017 intersection volumes. Under Existing plus Project Conditions, all ramps would operate at LOS C or better in both directions and for both AM and PM peak hours. The addition of project traffic would produce negligible changes in traffic density and level of service.
TABLE 4-21 RAMP TERMINAL LEVEL OF SERVICE ANALYSIS – EXISTING PLUS PROJECT CONDITIONS

<table>
<thead>
<tr>
<th>Direction</th>
<th>Peak Hour</th>
<th>Existing Conditions</th>
<th>Existing plus Project Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Density<sup>a</sup></td>
<td>LOS</td>
</tr>
<tr>
<td>I-680 Northbound</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lawrence Way On-Ramp</td>
<td>AM</td>
<td>19.2</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>24.9</td>
<td>C</td>
</tr>
<tr>
<td>Penniman Way Off-Ramp</td>
<td>AM</td>
<td>23.9</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>24.6</td>
<td>C</td>
</tr>
<tr>
<td>I-680 Southbound</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Luis Road On-Ramp</td>
<td>AM</td>
<td>26.4</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>25.3</td>
<td>C</td>
</tr>
<tr>
<td>North Main Street Off-Ramp</td>
<td>AM</td>
<td>13.7</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>15.3</td>
<td>B</td>
</tr>
</tbody>
</table>

^a Density – passenger cars per mile per lane.

All freeway segments and ramps would operate segments are expected to operate at the same level of service. Since the addition of project trips would not cause the operation of facilities operating acceptably to fall to an unacceptable level of service, the project would be expected to have a less-than-significant impact.

Background Plus Project Conditions

With project-generated traffic added to the Background volumes, the study roadways are expected to maintain an acceptable level of service. The Background Plus Project operating conditions are summarized in Table 4-22.

Mainline Analysis

The freeway level of service analysis results for the study segments of I-680 are summarized in Table 4-22. Results for Background conditions are included for comparison purposes, based on projected 2017 freeway volumes. Under Background plus Project Conditions, both freeway segments would operate at LOS C in both directions and for both AM and PM peak hours. The addition of project traffic would produce negligible changes in traffic density and freeway level of service.
All study freeway segments would continue to operate at acceptable levels of service upon the addition of project trips to Background volumes. Based on the presumed impact criteria of LOS D or better, the project is expected to have a *less-than-significant impact* on the North Main Street interchange under Background plus Project conditions.

Ramp Terminal Analysis

The level of service results for the ramps of the North Main Street interchange on I-680 are summarized in Table 4-23. Results for Background conditions are included for comparison purposes, based on projected 2025 intersection volumes. Under Background plus Project Conditions, all ramps would operate at LOS C or better in both directions and for both AM and PM peak hours. The addition of project traffic would produce negligible changes in traffic density and level of service.

Based on the presumed impact criteria of LOS E or better, the project is expected to have a *less-than-significant impact* on both study segments under Background plus Project conditions.

Cumulative Plus Project Conditions

With project-generated traffic added to the anticipated Cumulative volumes, the study roadways are expected to maintain an acceptable level of service. The Cumulative Plus Project operating conditions are summarized in Tables 4-24.
TABLE 4-23 RAMP TERMINAL LEVEL OF SERVICE ANALYSIS — BACKGROUND PLUS PROJECT CONDITIONS

<table>
<thead>
<tr>
<th>Direction</th>
<th>Peak Hour</th>
<th>Background Conditions</th>
<th>Background plus Project Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Density</td>
<td>LOS</td>
<td>Density</td>
</tr>
<tr>
<td>I-680 Northbound</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lawrence Way On-Ramp</td>
<td>AM</td>
<td>19.9</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>25.3</td>
<td>C</td>
</tr>
<tr>
<td>Penniman Way Off-Ramp</td>
<td>AM</td>
<td>24.5</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>25.3</td>
<td>C</td>
</tr>
<tr>
<td>I-680 Southbound</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Luis Road On-Ramp</td>
<td>AM</td>
<td>27.4</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>26.2</td>
<td>C</td>
</tr>
<tr>
<td>North Main Street Off-Ramp</td>
<td>AM</td>
<td>14.7</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>15.9</td>
<td>B</td>
</tr>
</tbody>
</table>

a. Density – passenger cars per mile per lane.

Mainline Analysis

The freeway level of service analysis results for the study segments of I-680 are summarized in Table 4-24. Results for Cumulative conditions are included for comparison purposes, based on projected 2017 freeway volumes. Under Cumulative plus Project Conditions, both freeway segments would operate at LOS C in both directions and for both AM and PM peak hours. The addition of project traffic would produce negligible changes in traffic density and freeway level of service.

Ramp Terminal Analysis

The level of service results for the ramps of the North Main Street interchange on I-680 are summarized in Table 4-25. Results for Cumulative conditions are included for comparison purposes, based on existing 2017 intersection volumes. Under Cumulative plus Project Conditions, all ramps would operate at LOS C or better in both directions and for both AM and PM peak hours. The addition of project traffic would produce negligible changes in traffic density and level of service.

The proposed project would be expected to have a less-than-significant impact on the study freeway segments and ramp terminals under the Cumulative volumes since the addition of project trips would not result in a segment previously operating acceptably to fall to an unacceptable level.
TABLE 4-24 Freeway Segment Level of Service Analysis — Cumulative plus Project Conditions

<table>
<thead>
<tr>
<th>ID</th>
<th>Segment</th>
<th>Direction</th>
<th>No. Lanes</th>
<th>Peak Hour</th>
<th>Cumulative Conditions</th>
<th>Project Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Volume</td>
<td>Density</td>
</tr>
<tr>
<td>1</td>
<td>I-680 North of North Main Street</td>
<td>Northbound</td>
<td>6</td>
<td>AM</td>
<td>7,779</td>
<td>21.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PM</td>
<td>8,101</td>
<td>22.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Southbound</td>
<td>6</td>
<td>AM</td>
<td>8,173</td>
<td>19.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PM</td>
<td>9,472</td>
<td>22.5</td>
</tr>
<tr>
<td>2</td>
<td>I-680 South of North Main Street</td>
<td>Northbound</td>
<td>6</td>
<td>AM</td>
<td>7,779</td>
<td>21.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PM</td>
<td>8,101</td>
<td>22.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Southbound</td>
<td>6</td>
<td>AM</td>
<td>9,262</td>
<td>22.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PM</td>
<td>9,854</td>
<td>23.4</td>
</tr>
</tbody>
</table>

a. Density – passenger cars per mile per lane.

b) Would the project conflict with an applicable congestion management program, including, but not limited to level of service standards and travel demand measures, or other standards established by the county congestion management agency for designated roads or highways?

Facilities that are part of the County’s CMP network are discussed above under Criterion (a). Impacts were determined to be less than significant.

c) Would the project result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks?

The closest airport to the proposed project is Buchanan Field Airport located approximately 6 miles to the north of the project site. Accordingly, impacts on air traffic patterns as a result of the proposed project would be less than significant.

d) Would the project substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?

The proposed project would not alter the layout or design of any major City road or intersection. Based on the proposed site plan, the driveways would be located in approximately or near the same locations as two of the three existing driveways to the site. Sight distance along Lawrence Way at both of the proposed project driveways was evaluated based on sight distance criteria contained in the Highway Design Manual published by Caltrans. As Lawrence Way is a one-way street, all driveways will be limited to left in/left out only. Parking is prohibited on Lawrence Way. The site plan shows a setback of at least 7 feet between...
TABLE 4-25 RAMP TERMINAL LEVEL OF SERVICE ANALYSIS – CUMULATIVE PLUS PROJECT CONDITIONS

<table>
<thead>
<tr>
<th>Direction</th>
<th>Peak Hour</th>
<th>Cumulative Conditions</th>
<th>Cumulative plus Project Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Density[^a] LOS</td>
<td>Density[^a] LOS</td>
</tr>
<tr>
<td>I-680 Northbound</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lawrence Way On-Ramp</td>
<td>AM</td>
<td>21.0 C</td>
<td>21.0 C</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>26.9 C</td>
<td>27.0 C</td>
</tr>
<tr>
<td>Penniman Way Off-Ramp</td>
<td>AM</td>
<td>25.3 C</td>
<td>25.4 C</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>26.1 C</td>
<td>26.1 C</td>
</tr>
<tr>
<td>I-680 Southbound</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Luis Road On-Ramp</td>
<td>AM</td>
<td>28.5 D</td>
<td>28.6 D</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>27.3 C</td>
<td>27.4 C</td>
</tr>
<tr>
<td>North Main Street Off-Ramp</td>
<td>AM</td>
<td>16.1 B</td>
<td>16.1 B</td>
</tr>
<tr>
<td></td>
<td>PM</td>
<td>16.6 B</td>
<td>16.6 B</td>
</tr>
</tbody>
</table>

[^a]: Density – passenger cars per mile per lane.

Parking and the sidewalk, and a sidewalk width of approximately 8 feet. Sight distance at the project driveways is considered a potentially significant impact.

Mitigation Measure TRANS-1: Installation of landscaping near the project driveways shall be required to remain at a height less than 30 inches in order to maintain clear sight lines.

Mitigation Measure TRANS-2: The proposed southernmost driveway shall only allow access for emergency vehicles, and include striping to indicate this restriction.

With implementation of Mitigation Measures TRANS-1 and TRANS-2, the project would have adequate sight distance, and the impact would be considered less than significant.

e) **Would the project result in inadequate emergency access?**

Emergency vehicle access would be provided via two driveways on Lawrence Way. Internal driveways would be designed to provide adequate width and turn-radii to provide continuous unimpeded circulation through the site for emergency vehicles and large trucks, such as garbage trucks. As shown on Figure 3-3, in Chapter 3, Project Description, the site would provide two-way drive aisles between 25 to 26 feet wide for vehicles and trucks, and a fire lane extending around the southern end of the hotel.
The proposed project would not cause substantial increases in delays at intersections and freeway ramps in the study-area network, therefore emergency vehicular access would not be affected. Therefore, impacts associated with the implementation of the proposed project would be less than significant.

f) Would the project conflict with adopted policies, plans, or programs regarding public transit, bicycle, or pedestrian facilities, or otherwise decrease the performance or safety of such facilities?

The following presents an analysis of other transportation issues associated with the project site, including bicycle circulation, pedestrian circulation, and transit access.

Bicycle Circulation

An impact to pedestrians occurs if the proposed project disrupts existing bicycle facilities; or creates inconsistencies with planned bicycle facilities or adopted bicycle system plans, guidelines, policies, or standards. Class II106 bike lanes exist along. Class III107 bike routes are located on San Luis Road, Buena Vista Avenue, Parkside Drive between Buena Vista Avenue and Riviera Avenue, and Riviera Avenue south of Parkside Drive. Future bicycle facilities are planned for, on, and on.

Currently, within the immediate surroundings of the project site, Class II bike lanes are provided along North Main Street north of San Luis Road and on Buena Vista Avenue north of San Luis Road. City-designated Class III bikeways exist along San Luis Road, Buena Vista Avenue, Parkside Drive between Buena Vista Avenue and Riviera Avenue, and Riviera Avenue south of Parkside Drive.

The *Walnut Creek Bicycle Plan* identifies proposed bikeway improvement projects in the city. These are listed below.

Bicycle facilities within the project area are planned for:

- Parkside Drive between Riviera Drive and North Civic Road;
- Jones Road; and
- North Civic Drive/Oak Road.

The proposed project will have adequate bicycle access to the project site from the surrounding area and is not expected to create any inconsistencies with bicycle facilities or plans. In addition, implementation of the above bicycle projects, in connection with other bicycle projects within the city, would provide a continuous bicycle network that would provide access to/from the project site to various others destinations within the city.

106 Class II Bike Lane – Lanes on roadways designated for use by bicycles through striping, pavement legends, and signs.

107 Class III Bike Route – Designated roadways for bicycle use by signs or other markings may or may not include additional pavement width for cyclists.
Per Title 10, Planning Zoning, Part III, Article 2 of the City Municipal Code, all commercial development must provide on-site bicycle parking spaces equal to 10 percent of the total required parking. Based on the total number of parking spaces required (112), the proposed project would require 11 bicycle parking spaces. Although the location of bicycle parking is shown on Figure 3-3, in Chapter 3, Project Description, the number of bicycle spaces provided is not indicated.

Pedestrian Circulation

An impact to pedestrians occurs if the proposed project disrupts existing pedestrian’s facilities; or creates inconsistencies with planned pedestrian facilities or adopted pedestrian system plans, guidelines, policies, or standards. In the immediate project vicinity, there are sidewalks provided on one side each of Lawrence Way, Penniman Way, and San Luis Road. North Main Street provides sidewalks on both sides, with the exception of the segment of Penniman Way and San Luis Road, which has a sidewalk on one side only. Parkside Drive, North Broadway, and North Civic Drive all provide sidewalks on both sides. Sidewalks are connected by a mix of ADA-compliant and non-ADA-compliant curb ramps. Crosswalks are present at all intersections, and all signalized intersections provide pedestrian signal heads.

The proposed project may produce a moderate amount of pedestrian trips between the hotel and nearby shopping centers, which would all be accommodated by existing, adequate pedestrian facilities. The proposed project is not expected provide any disruptions or inconsistencies, or otherwise conflict with pedestrian facilities or plans.

Transit Service

A proposed project is considered to have a significant impact on transit if it conflicts with existing or planned transit facilities, or is expected to generate additional transit trips and does not provide adequate facilities for pedestrians and bicyclists to access transit routes and stops.

Within the project vicinity, several County Connection routes are available. As described above under the Existing Conditions section, the routes served at these bus stops are 9, 15, 98X, and 311. The nearest bus stop to the project site is located on at the intersection of North Main Street and Parkside Drive, 0.3 miles from the project site. Additionally, the Walnut Creek BART Station, located at the northwest intersection of North California Boulevard and Ygnacio Valley Road, is located less than 1-mile south of the project site and provides a connection to most transit lines serving Walnut Creek.

Pedestrians and bicyclists can access the closest transit stops on North Main Street and North Civic Drive via a continuous path of sidewalks. The transit service within the immediate project vicinity operates within capacity, and additional trips generated by the proposed project could be accommodated by

108 Walnut Creek Municipal Code Section 10-2.3.206 Off-Street Parking and Loading Spaces Required. Table A: Parking Regulations, 124 proposed rooms x 0.9 spaces per guest room = 111.6 vehicular parking spaces required.
existing bus services. In addition, the project would not interfere with existing transit facilities, such as bus stops and turnouts.

Summary

In summary, the proposed project would not interfere with existing bike routes, would not block sidewalks on Lawrence Way, and would not interfere with use of bus stops on Lawrence Way. The proposed project would develop a hotel less than a mile from a BART station and on a roadway served by bus routes. However, it cannot be determined whether the proposed project would comply with City bicycle parking requirements. Therefore, impacts associated with the implementation of the proposed project would be potentially significant.

Mitigation Measure TRANS-3: The proposed project shall provide adequate bicycle parking on-site, equal to at least 11 spaces.

With implementation of Mitigation Measure TRANS-3, the impact would be considered *less than significant*.

XV. UTILITIES AND SERVICE SYSTEMS

<table>
<thead>
<tr>
<th>Would the proposed project:</th>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation Incorporated</th>
<th>Less Than Significant</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Exceed wastewater treatment requirements of the applicable Regional Water Quality Control Board?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>b) Require or result in the construction of new water or wastewater treatment facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>c) Require or result in the construction of new stormwater drainage facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>d) Have insufficient water supplies available to serve the project from existing and identified entitlements and resources?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>
Would the proposed project: | Potentially Significant Impact | Less Than Significant With Mitigation Incorporated | Less Than Significant | No Impact |
--- | --- | --- | --- | --- |
e) Result in the determination by the wastewater treatment provider which serves or may serve the project that it has adequate capacity to serve the project’s projected demand in addition to the providers existing commitments? | ☐ | ☐ | ☐ | ☐ |
f) Not be served by a landfill with sufficient permitted capacity to accommodate the buildout of the project’s solid waste disposal needs? | ☐ | ☐ | ☐ | ☐ |
g) Comply with federal, state, and local statutes and regulations related to solid waste? | ☐ | ☐ | ☐ | ☐ |
h) Result in a substantial increase in natural gas and electrical service demands requiring new energy supply facilities and distribution infrastructure or capacity enhancing alterations to existing facilities? | ☐ | ☐ | ☐ | ☐ |

EXISTING CONDITIONS

The utilities service providers for the project site are as follows:

- The project site is located within the East Bay Municipal Utilities District (EBMUD). EBMUD adopted an Urban Water Management Plan in 2015, and supplies water to approximately 1.3 million people within a 325-square-mile service area. EBMUD has water rights to 325 mgd and up to 365,000 acre-feet per year (af/y) from the Mokelumne River system, and 150,000 af/y from the American River when river flows are above minimum flow levels.

- The water is delivered to the Walnut Creek treatment plant located on Larkey Lane via the Pardee Reservoir and Mokelumne Aqueducts. The Walnut Creek water treatment plant has a permitted capacity of 115 million gallons per day (mgd). Water supply and demand information can be found in the 2015 Urban Water Management Plan (UWMP) for the EBMUD. As shown in the UWMP, under baseline assumptions, in normal and single dry years through 2040 EBMUD can meet demand; however, EBMUD suggests that due to EBMUD’s limited water supply, all customers should plan for shortages in time of drought. In addition, Section 31 of EBMUD’s Water Service Regulations applicants...
for new or expanded water service install the applicable water efficient measures at the proposed project sponsor’s expense.

- The Central Contra Costa Sanitary District (CCCSD) provides wastewater collection and treatment service for Walnut Creek. Sanitary wastewater generated on the project site would be treated by the CCCSD’s wastewater treatment facility.113 As shown on Figure 3-8, the proposed project would connect to the existing 12-inch sewer system line beneath Lawrence Way. Any new connections or replaced sewer lines would not encroach on previously undisturbed areas. CCCSD is in the process of implementing its Ten-Year Capital Improvement Plan, expanding capacity at its treatment plant and collection system, and improving existing facilities to accommodate planned future growth and protect public health and the environment.114 The treatment plant has a treatment capacity of 54 mgd and 240 mgd of wet weather flow, but currently receives approximately 36 mgd from residential and commercial customers in the CCS service area.115

- Commercial solid waste is collected within the city by Republic Services, contracted through the Central Contra Costa Solid Waste Authority (CCCSWA).116 Walnut Creek’s commercial solid waste is taken to the Contra Costa Transfer and Recovery Facility in Martinez and ultimately disposed of at the Keller Canyon Landfill. The landfill is permitted to allow up to 3,500 tons of waste per day and has a total capacity of 75 million tons, with a remaining capacity of 50 million tons. Commercial recycling is voluntary in Contra Costa County, and the CCSWA has a commercial recycling permitting program whereby businesses may choose from a list of commercial recyclers.117 The proposed project would include one solid waste and recycling storage area located at the southwest corner of the proposed building.

Consistent with City requirements,118 the project would include a Waste Management Plan, which describes the estimated volume of reusable and recyclable construction and demolition debris and specifies the vendor or facility proposed to collect or receive the diverted materials. As part of the Waste Management Plan procedures, within 30 days after the completion of the proposed project, the applicant would be required to submit a Waste Management Report as proof that the proposed project met the diversion requirements.119

- Gas and electricity would be supplied to the project site by Pacific Gas & Electric (PG&E) and telephone, cable television, and internet services would be supplied by various providers. As shown

113 City of Walnut Creek, April 4, 2006. Walnut Creek 2025 General Plan EIR, Utilities and Infrastructure, page 138.
117 City of Walnut Creek, April 4, 2006. Walnut Creek 2025 General Plan EIR, Utilities and Infrastructure, page 131.
118 City of Walnut Creek Municipal Code, Title 5, Sanitation and Health, Chapter 5-3.603, Submission of Waste Management Plan (WMP).
119 City of Walnut Creek Municipal Code, Title 5, Sanitation and Health, Chapter 5-3.603, Submission of Waste Management Report (WMR).
on Figure 3-7 above, the project would connect to the existing gas lines, electric vaults, cable and fiber optic lines beneath Lawrence Way.

DISCUSSION

a) Would the project exceed wastewater treatment requirements of the applicable Regional Water Quality Control Board?

The project site is currently developed with surface parking and two structures used for City administrative purposes, as well as automobile inventory storage, and would be redeveloped with a hotel. Wastewater effluent associated with a hotel land use would not substantially increase pollutant loads as there is no heavy industrial use or agricultural processing where pollutant loads and wastewater volumes are heavy. Therefore, construction and operation of the proposed project is not expected to exceed the discharge limits established by the San Francisco Bay RWQCB. Furthermore, as discussed in Criterion (a) in Section IX, Hydrology and Water Quality, above, the project applicant has prepared a preliminary C.3 worksheet showing the change in impervious area and the appropriateness of stormwater treatment elements. The site is currently almost entirely covered with impervious surfaces. Implementation of the proposed project would decrease the amount of impervious surfaces by 30,070 square feet. Stormwater runoff generated at the site will be directed to 21 on-site bioretention areas where the stormwater will be treated, filtered, and released gradually to the City’s storm drain system. This will minimize potential water quality impacts associated with development. Details of the proposed on-site stormwater treatment system are provided as Figure 3-8 (stormwater management plan) in Chapter 3, Project Description, of this IS/MND. The proposed hotel would not generate any types of wastewater subject to the Small Volume Discharge Program or the Federal Pretreatment Program. Therefore, the proposed project would not exceed wastewater treatment requirements of the San Francisco Bay RWQCB, and impacts would be *less than significant.*

b) Require or result in the construction of new water or wastewater treatment facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?

The proposed project is estimated to generate a net increase in water demands of about 2,122 gallons per day (gpd) or 0.0002 mgd when compared to existing conditions.120 As stated above under the Existing Conditions section, the CCCSD water treatment plant has an existing capacity of 54 mgd. Therefore, there is sufficient water treatment capacity in the region to meet forecast proposed project water demands, and development of the project would not require construction of new or expanded water treatment facilities; thus, impacts would be *less than significant.*

The proposed project would redevelop a highly urbanized site, which is already served by existing water and sewer infrastructure. As shown on Figure 3-8, the proposed project in Chapter 3, Project Description, of this IS/MND, new sanitary sewer lines would connect to the City’s existing storm drain system via the 18-inch storm drain located beneath Lawrence Way and an 8-inch storm drain located at the far west portion of the project site. As such, these new wastewater lines would connect to areas already affected by installation of the original utility infrastructure. Additionally, the proposed project would be required to pay the CCCSD’s sewer connection fees per the current fee schedule, which are required when proposed building plumbing facilities are connected to the sewer system to off-set the cost of such infrastructure improvements to the CCCSD.

Wastewater generation is estimated as 100 percent of indoor water use. As stated above, the proposed project is estimated to generate a net increase in water demands of about 2,122 gallons per day (gpd) or 0.0002 mgd when compared to existing conditions. As discussed under the Existing Conditions section, the CCCSD has a capacity to treat 54 mgd and currently receives approximately 36 mgd from residential and commercial customers in the CCCSD service area. Because the proposed project will only contribute 8,618 gpd or 0.001 mgd, which is well within the CCCSD capacity, the proposed project would not require construction of new or expanded wastewater treatment facilities and impacts would be less than significant.

c) Would the project require or result in the construction of new stormwater drainage facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?

The project site is an infill site located in the highly urbanized area. Under existing conditions, the site is currently almost entirely covered with impervious surfaces. Implementation of the proposed project would decrease the amount of impervious surfaces by 30,070 square feet. The project site is currently developed and connected to the City’s storm drain system. There is a 12-inch storm drain located beneath Lawrence Way that drains to the CCCSD treatment plant. Proposed drainage includes an internal storm drain network that connects to twenty-one bioretention areas that total 3,404 square feet, as shown on Figure 3-8 in Chapter 3, Project Description, of this IS/MND (grading plan and stormwater management plan). The location and configuration of the proposed stormwater low impact development (LID) features are shown on Figure 3-8 in Chapter 3 Project Description, of this IS/MND. As discussed under Criterion (a) in Section IX, Hydrology and Water Quality, all new development projects that disturb one or more acres are required to incorporate water quality improvements into the site design, as per the Contra Costa County Stormwater C.3 requirements. The requirements include the minimization of impervious surfaces, measures to detain or infiltrate runoff from peak flows to match pre-development conditions, and agreements to ensure that the stormwater treatment and flow control facilities are maintained in perpetuity. Also, the City of Walnut Creek Municipal Code Title 9, Building Regulations, Chapter 16,

Stormwater Management and Discharge Control, requires compliance with best management practices to reduce stormwater pollution or contamination for each development project. Therefore, impacts would be less than significant.

d) Would the project have insufficient water supplies available to serve the project from existing and identified entitlements and resources?

As stated above, the proposed project is estimated to generate a net increase in water demands of about 2,122 gallons per day (gpd) or 0.0002 mgd when compared to existing conditions. As described in the Existing Conditions discussion above, the EBMUD forecasts that it will have adequate water supplies to meet estimated proposed project demands through 2040 in a normal year and single dry year; and suggests all customers plan for shortages in time of drought. EBMUD also requires compliance with Section 31 applicable to applications for new or expanded water service.

EBMUD requests the City of Walnut Creek include in its conditions of project approval a requirement that all new development comply with the California Model Water Efficient Landscape Ordinance (Division 2, Title 23, California Code of Regulations, Chapter 2.7, Sections 490 through 495). Furthermore, the General Plan 2025 Chapter 4, Built Environment Element, includes the following policies and actions that promote water conservation in the city:

- **Policy 29.2.** Promote water conservation throughout the community.
 - **Action 29.3.1** Encourage water use consistent with the City’s adopted water conservation guidelines.
 - **Action 29.2.4** Follow existing standards and guidelines for water-conserving landscaping, and encourage the planting of native and drought-tolerant plants.

Accordingly, the proposed project incorporates a number of features meant to conserve the use of water used for irrigation on site. Water conserving features include automatic “smart” irrigation controller with rain-sensor, low flow/low volume irrigation, point source drip irrigation for shrubs and groundcovers, low water consuming plants, soil moisture retention techniques, and mulching to reduce evapotranspiration from the root zone. As shown on Figure 3-5, in Chapter 3, Project Description, plants would be grouped with similar water, climatic and soil requirements to conserve water and create a drought responsive landscape. The proposed landscaping includes specific hydrozones that consist of moderate to low water consuming plants with consideration given to the northern, southern, eastern and western exposures to conserve water. Therefore, with implementation of design features presented in the proposed project and mandatory compliance with City and EBMUD regulations, impacts would be less than significant.

ENVIRONMENTAL ANALYSIS AND FINDINGS

e) Result in the determination by the wastewater treatment provider which serves or may serve the project that it has adequate capacity to serve the project’s projected demand in addition to the providers existing commitments?

As discussed under Criterion (b) above, wastewater generation is estimated as 100 percent of indoor water use and the proposed project is estimated to generate a net increase in water demands of about 2,122 gallons per day (gpd) or 0.0002 mgd when compared to existing conditions. The CCCSD has a capacity to treat 54 mgd and currently receives approximately 36 mgd from residential and commercial customers in the CCCSD service area. Accordingly, the CCCSD has adequate capacity to serve the proposed project and impacts would be less than significant.

f) Would the project not be served by a landfill with sufficient permitted capacity to accommodate the buildout of the project’s solid waste disposal needs?

For the purposes of this analysis, the proposed hotel is estimated to generate approximately 372 pounds of solid waste per day. The existing public administration uses on-site are estimated to generate 44 pounds per day using the solid waste generation rate for public administration uses, using the approximately 8,488-square-foot total footprint of buildings on-site. Thus, the hotel would generate a net increase of about 320 pounds of solid waste per day.

Commercial solid waste is collected within the city is taken to the Contra Costa Transfer and Recovery Facility in Martinez and transferred to the Keller Canyon Landfill in Contra Costa County for disposal. As described above, the landfill, owned and operated by Keller Canyon Landfill, has a permitted capacity of 3,500 tons per day and a remaining capacity of 63,408,410 cubic yards. In 2017 the landfill received 1,095,000 tons of solid waste per year, of which 98,987 tons were from Walnut Creek. This would result in approximately 136,000 pounds per year or 68 tons per year of waste generated by the proposed project, which is only a small percentage of the total solid waste received. Further, as described in Section XI Population and Housing, construction of the proposed project would not exceed local or regional growth projections; therefore, the landfill would have sufficient capacity to accommodate the proposed project’s solid waste disposal needs and impacts would be less than significant.

g) Would the project comply with federal, state, and local statutes and regulations related to solid waste?

Solid waste generated by construction of the proposed project would largely consist of demolition waste from the existing commercial building and associated paved surfaces as well as construction debris. In compliance with The California Green Building Standards Code (Part 11, Title 24, known as “CALGreen”), the project applicant would be required to have a waste management plan, for on-site sorting or construction debris, which is submitted to the City of Walnut Creek for approval.128 Also, the City Municipal Code includes construction waste diversion and recycling requirements through Municipal Code Title 5, Chapter 3, Article 6, Construction Debris Recycling Ordinance. The ordinance requires covered projects generating waste, (i.e., construction of floor area greater than 1,000 square feet) to divert at least 65 percent of all generated tonnage. Because the proposed project fits this criterion, construction will be required to comply with the ordinance. The proposed project would also be required to prepare a Waste Management Plan (WMP) and Waste Management Report (WMR) per the Construction Debris Recycling Ordinance.

In compliance with Assembly Bill 939, which requires that cities and counties divert 50 percent of all solid waste from landfills as of January 1, 2000 through source reduction, recycling, and composting, the City of Walnut Creek has adopted the following plans relevant to solid waste services: the Source Reduction and Recycling Element, the Household Hazardous Waste Element (HHWE), and the Non-Disposal Facility Element (NDFE). As described above, the proposed project would prepare a WMP and WMR, and would comply with other regulations governing solid waste disposal and solid waste diversion. Impacts would be less than significant.

h) Would the project result in a substantial increase in natural gas and electrical service demands requiring new energy supply facilities and distribution infrastructure or capacity enhancing alterations to existing facilities?

The proposed project would demolish the existing public administration building and replace it with new structures that would meet the current Building and Energy Efficiency Standards. The 2016 Building and Energy Efficiency Standards became effective January 1, 2017.129

The project site is currently served by existing PG&E distribution systems that would provide natural gas and electricity services to the project site. As described in Section X, Land Use and Planning, above, the proposed project complies with the General Plan land use designation requirements as well as the Zoning district requirements and would not result in new growth potential from what was considered in the City’s General Plan. The proposed project would include appropriate on-site infrastructure to connect to the

128 City of Walnut Creek Municipal Code, Title 5, Sanitation and Health, Chapter 5-3.603, Submission of Waste Management Plan (WMP).

existing PG&E systems and would not require new off-site energy supply facilities and distribution infrastructure or capacity enhancing alterations to existing facilities. Accordingly, impacts would be less than significant.

XVI. MANDATORY FINDINGS OF SIGNIFICANCE

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less Than Significant With Mitigation Incorporated</th>
<th>Less Than Significant No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Does the project have the potential to degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory?</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>b) Does the project have impacts that are individually limited, but cumulatively considerable? ("Cumulatively considerable" means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects)?</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>c) Does the project have environmental effects which will cause substantial adverse effects on human beings, either directly or indirectly?</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

DISCUSSION

a) Does the project have the potential to degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory?

As described above, the project site is in a highly developed area of Walnut Creek. It is entirely developed with two structures for City administrative use and associated surface parking; the project site has few green spaces and a limited number of trees. There are no sensitive natural communities, no areas of sensitive habitat, and no areas of critical habitat occurring at the project site. Additionally, there are no buildings currently listed or eligible for listing on the California Register of Historical Resources, no recorded archaeological sites, and no known paleontological resources located on the project site.

Therefore, implementation of the proposed project would result in a less-than-significant impact to the environment and wildlife on the project site.
b) Does the project have impacts that are individually limited, but cumulatively considerable? ("Cumulatively considerable" means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects)?

As described in the environmental checklist, the impacts of the proposed project would be mitigated to less-than-significant levels. Therefore, the proposed project would not be expected to contribute to significant cumulative impacts when considered along with other impacts or other reasonably foreseeable projects or when considered with the overall buildout under the City’s General Plan.

c) Does the project have environmental effects which will cause substantial adverse effects on human beings, either directly or indirectly?

As discussed previously, the proposed project would not result in a significant impact that could not be mitigated to a less-than-significant level, thus the proposed project’s environmental effects would be less than significant.

The proposed project construction would comprise up to 61,403 square feet for the hotel and surface parking, 9,870 square feet of paving and hardscape (e.g., curb, gutters, planters, seat walls, etc.), and 27,640 square feet of landscaping and other pervious surfaces. The estimated demolition and construction would take place over a period of approximately 17 months, which is anticipated to commence in September 2018, subject to regulatory approval.

After demolition of the buildings, parking lots, other hardscape, and landscaping would be removed. Demolition debris would be recycled, reused, or disposed of pursuant to a Construction & Demolition Waste Management Plan Agreement between the applicant and the City as required under City Municipal Code Chapter 5-3.603. Debris to be hauled would include approximately 8,488 square feet of building demolition and 1,542 tons of asphalt; all debris would be recycled. To be conservative, it is estimated that a maximum of 1,000 cubic yards of soil would be exported; soil import is not anticipated to occur. Site preparation, including grading and utility trenches, would be in compliance with recommendations in the project geotechnical engineering report, which is included as Appendix C, Geotechnical Report, of this IS/MND.

During demolition and construction, vehicle, equipment, and materials would be staged and stored on a portion of the project site. The construction site and staging areas would be clearly marked, and barriers would be installed to prevent disturbance and safety hazards. No staging would occur in the public right-of-way. A combination of on- and off-site parking facilities for construction workers would be identified.

130 City of Walnut Creek Municipal Code, Title 5, Sanitation and Health, Chapter 5-3.603, Submission of Waste Management Plan (WMP).
131 Geotechnical Investigation, Hilton Garden Inn Hotel, 490 Lawrence Way, Walnut Creek, CA, Stevens Ferrone & Bailey, Project Number 795-1, September 5, 2017.
during demolition, grading, and construction, and all work would be subject to a construction traffic control plan to be approved by the City. The demolition and construction phase would generate approximately 550 temporary jobs with approximately 10 to 50 workers on-site daily. Construction work hours would be consistent with City requirements.
5. Mitigation Monitoring or Reporting Program

This Mitigation Monitoring or Reporting Program (MMRP) has been prepared for the Hilton Garden Inn project. The purpose of the MMRP is to ensure the implementation of mitigation measures identified as part of the environmental review for the proposed project. The MMRP includes the following information:

- The full text of the mitigation measures;
- The party responsible for implementing the mitigation measures;
- The timing for implementation of the mitigation measure;
- The agency responsible for monitoring the implementation; and
- The monitoring action and frequency.

The City of Walnut Creek must adopt this MMRP, or an equally effective program, if it approves the proposed project with the mitigation measures that were adopted or made conditions of project approval.
Table 5-1 Mitigation Monitoring or Reporting Program

<table>
<thead>
<tr>
<th>Mitigation Measures</th>
<th>Party Responsible for Implementation</th>
<th>Implementation Timing</th>
<th>Agency Responsible for Monitoring</th>
<th>Monitoring Action</th>
<th>Monitoring Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIR QUALITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AQ-1: The Applicant shall require their construction contractor to comply with the following BAAQMD Best Management Practices for reducing construction emissions of PM\textsubscript{10} and PM\textsubscript{2.5}:</td>
<td>Project Contractor</td>
<td>During Construction</td>
<td>City of Walnut Creek</td>
<td>Site preparation</td>
<td>During scheduled construction site inspections</td>
</tr>
<tr>
<td>- Water all active construction areas at least twice daily or as often as needed to control dust emissions. Watering should be sufficient to prevent airborne dust from leaving the site. Increased watering frequency may be necessary whenever wind speeds exceed 15 miles per hour. Reclaimed water should be used whenever possible.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Pave, apply water twice daily or as necessary to control dust, or apply (non-toxic) soil stabilizers on all unpaved access roads, parking areas, and staging areas at construction sites.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Cover all trucks hauling soil, sand, and other loose materials or require all trucks to maintain at least 2 feet of freeboard (i.e., the minimum required space between the top of the load and the top of the trailer).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Sweep daily (with water sweepers using reclaimed water if possible) or as often as needed all paved access roads, parking areas, and staging areas at the construction site to control dust.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Sweep public streets daily (with water sweepers using reclaimed water if possible) in the vicinity of the project site, or as often as needed, to keep streets free of visible soil material.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Hydro-seed or apply non-toxic soil stabilizers to inactive construction areas.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Enclose, cover, water twice daily, or apply non-toxic soil binders to exposed stockpiles (e.g., dirt, sand).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Limit vehicle traffic speeds on unpaved roads to 15 mph.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Replant vegetation in disturbed areas as quickly as possible.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Install sandbags or other erosion control measures to prevent silt runoff from public roadways.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The City of Walnut Creek or their designee shall verify compliance that these measures have been implemented during normal construction site inspections.
Table 5-1 Mitigation Monitoring or Reporting Program

<table>
<thead>
<tr>
<th>Mitigation Measures</th>
<th>Party Responsible for Implementation</th>
<th>Implementation Timing</th>
<th>Agency Responsible for Monitoring</th>
<th>Monitoring Action</th>
<th>Monitoring Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>AQ-2: During construction, the construction contractor(s) shall use construction equipment fitted with Level 2 Diesel Particulate Filters (DPF) or higher for all equipment over 50 horsepower. The construction contractor shall maintain a list of all operating equipment in use on the project site for verification by the City of Walnut Creek Building Division official or his/her designee. The construction equipment list shall state the makes, models, and number of construction equipment on-site. Equipment shall be properly serviced and maintained in accordance with manufacturer recommendations. The construction contractor shall ensure that all non-essential idling of construction equipment is restricted to five minutes or less in compliance with California Air Resources Board Rule 2449. Prior to issuance of any construction permit, the construction contractor shall ensure that all construction plans submitted to the City of Walnut Creek Planning Division and/or Building Division clearly show the requirement for Level 2 DPF or higher emissions standards for construction equipment over 50 horsepower.</td>
<td>Project Contractor</td>
<td>During Construction</td>
<td>City of Walnut Creek</td>
<td>Site preparation</td>
<td>During scheduled construction site inspections</td>
</tr>
</tbody>
</table>

CULTURAL RESOURCES

| CULT-1: If any prehistoric or historic subsurface cultural resources are discovered during ground-disturbing activities, all work within 50 feet of the resources shall be halted and a qualified archaeologist shall be consulted to assess the significance of the find according to CEQA Guidelines Section 15064.5. If any find is determined to be significant, representatives from the City and the archaeologist would meet to determine the appropriate avoidance measures or other appropriate mitigation. All significant cultural materials recovered shall be, as necessary and at the discretion of the consulting archaeologist, subject to scientific analysis, professional museum curation, and documentation according to current professional standards. In considering any suggested mitigation proposed by the consulting archaeologist to mitigate impacts to historical resources or unique archaeological resources, the City shall determine whether avoidance is necessary and feasible in light of factors such as the nature of the find, proposed project design, costs, and other considerations. If avoidance is necessary, the City and the archaeologist would agree on the appropriate avoidance measures. If avoidance is not determined to be necessary, the archaeologist would propose and implement mitigation measures as outlined in the consulting archaeologist's mitigation strategy. | Project Contractor | During Construction | City of Walnut Creek | Project approval | If resources are uncovered |
Mitigation Monitoring or Reporting Program

Table 5-1 Mitigation Monitoring or Reporting Program

<table>
<thead>
<tr>
<th>Mitigation Measures</th>
<th>Party Responsible for Implementation</th>
<th>Implementation Timing</th>
<th>Agency Responsible for Monitoring</th>
<th>Monitoring Action</th>
<th>Monitoring Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>infeasible, other appropriate measures (e.g., data recovery) would be instituted. Work may proceed on other parts of the project site while mitigation for historical resources or unique archaeological resources is being carried out.</td>
<td>Project Contractor</td>
<td>During Construction</td>
<td>City of Walnut Creek</td>
<td>Project approval</td>
<td>If resources are uncovered</td>
</tr>
<tr>
<td>CULT-2: In the event that fossils or fossil-bearing deposits are discovered during construction, excavations within 50 feet of the find shall be temporarily halted or diverted. The contractor shall notify a qualified paleontologist to examine the discovery. The paleontologist shall document the discovery as needed, in accordance with Society of Vertebrate Paleontology standards (Society of Vertebrate Paleontology 1995), evaluate the potential resource, and assess the significance of the find under the criteria set forth in CEQA Guidelines Section 15064.5. The paleontologist shall notify the appropriate agencies to determine procedures that would be followed before construction is allowed to resume at the location of the find. If the Project proponent determines that avoidance is not feasible, the paleontologist shall prepare an excavation plan for mitigating the effect of the proposed Project based on the qualities that make the resource important. The plan shall be submitted to the City for review and approval prior to implementation.</td>
<td>Project Contractor</td>
<td>During Construction</td>
<td>City of Walnut Creek</td>
<td>Project approval</td>
<td>If resources are uncovered</td>
</tr>
<tr>
<td>TRIBAL CULTURAL RESOURCES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCR-1: Implement Mitigation Measure CULT-1.</td>
<td>Project Contractor</td>
<td>During Construction</td>
<td>City of Walnut Creek</td>
<td>Project approval</td>
<td>If resources are uncovered</td>
</tr>
<tr>
<td>GEOLOGY AND SOILS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEO-1: To mitigate the impact of proposed project implementation with respect to differential expansion, the relevant recommendations of the September 5, 2017 Stevens, Ferrone & Bailey Engineering Company, Inc. geotechnical report shall be followed. To mitigate the potential of differential expansion, the geotechnical investigation recommended grading be performed so that all building foundations and surrounding flatwork be supported on a moisture conditioned, well blended engineered fill layer at least 5 feet thick. The compacted, engineered fill layer shall be located below building foundations and surrounding flatwork and</td>
<td>Project Contractor</td>
<td>During Construction</td>
<td>City of Walnut Creek</td>
<td>Project approval</td>
<td>During Construction</td>
</tr>
</tbody>
</table>
TABLE 5-1: MITIGATION MONITORING OR REPORTING PROGRAM

<table>
<thead>
<tr>
<th>Mitigation Measures</th>
<th>Party Responsible for Implementation</th>
<th>Implementation Timing</th>
<th>Agency Responsible for Monitoring</th>
<th>Monitoring Action</th>
<th>Monitoring Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extend at least 5 feet beyond building footprints and at least 3 feet beyond exterior flatwork. A geotechnical technician should be onsite during over-excavation and replacement to observe and test fill placement operations. A geotechnical improvement plan showing the approximate lateral extent and depth of the recommended over-excavations should be drafted according to the specifications above and followed during the course of construction. In addition, the proposed building should be supported on a foundation system that is designed to reduce the impact of expansive soils.</td>
<td>Project Applicant</td>
<td>During design, construction and post-construction</td>
<td>City of Walnut Creek/DTSC</td>
<td>Site preparation</td>
<td>During scheduled construction site inspections</td>
</tr>
<tr>
<td>HAZARDS AND HAZARDOUS MATERIALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAZ-1: Implementation of the engineering and institutional protocols of the RAW, RACR, SMP, and LUC during design, construction, and post-construction project site activities shall be required to ensure contamination in soil, groundwater, and soil gas would not pose substantial hazards to the public or the environment.</td>
<td>Project Applicant</td>
<td>Review of final landscaping plan, prior to issuance of Building Permit</td>
<td>City of Walnut Creek</td>
<td>Project approval</td>
<td>Once</td>
</tr>
<tr>
<td>TRANSPORTATION AND CIRCULATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRANS-1: Installation of landscaping near the project driveways shall be required to remain at a height less than 30 inches in order to maintain clear sight lines.</td>
<td>Project Applicant</td>
<td>Site plan review, prior to issuance of building permit.</td>
<td>City of Walnut Creek</td>
<td>Project approval</td>
<td>Once</td>
</tr>
<tr>
<td>TRANS-2: The proposed southernmost driveway shall only allow access for emergency vehicles, and include striping to indicate this restriction.</td>
<td>Project Applicant</td>
<td>Site plan review, prior to issuance of building permit.</td>
<td>City of Walnut Creek</td>
<td>Project approval</td>
<td>Once</td>
</tr>
<tr>
<td>TRANS-3: The proposed project shall provide adequate bicycle parking on-site, equal to at least 11 spaces.</td>
<td>Project Applicant</td>
<td>Site plan review, prior to issuance of building permit.</td>
<td>City of Walnut Creek</td>
<td>Project approval</td>
<td>Once</td>
</tr>
</tbody>
</table>
This page intentionally blank
6. Organizations and Persons Consulted

This Initial Study was prepared by the following consultants and individuals:

LEAD AGENCY

City of Walnut Creek

Chip Griffin, Senior Planner
Steve Waymire, City Engineer

REPORT PREPARERS

LEAD EIR CONSULTANT

PlaceWorks
Steve Noack, AICP, Principal-in-Charge
Ashley James, Associate, Project Manager
Nicole Vermillion, Associate Principal
Denise Clendening, Associate Principal, PhD
Bob Mantey, Manager, Noise, Vibration & Acoustics
Steve Bush, Senior Associate, PE
Mike Watson, Associate Geologist, PG
Michael Milroy, Associate Scientist
Alexis Whitaker, Environmental Scientist, Air Quality, Greenhouse Gas Emissions and Noise Specialist
Cameron Sullivan, Project Engineer, Noise, Vibration & Acoustics
Grant Reddy, Graphic Design Specialist

TRANSPORTATION CONSULTANT

TJ KM

Chris Kinzel, Principal, PE
Prashanth Dullu, Assistant Project Engineer, PE
This page intentionally left blank.